Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 13(5)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36899736

RESUMO

Epithelial-to-mesenchymal transition (EMT) is a process by which epithelial cells acquire mesenchymal properties. EMT has been closely associated with cancer cell aggressiveness. The aim of this study was to evaluate the mRNA and protein expression of EMT-associated markers in mammary tumors of humans (HBC), dogs (CMT), and cats (FMT). Real-time qPCR for SNAIL, TWIST, and ZEB, and immunohistochemistry for E-cadherin, vimentin, CD44, estrogen receptor (ER), progesterone receptor (PR), ERBB2, Ki-67, cytokeratin (CK) 8/18, CK5/6, and CK14 were performed. Overall, SNAIL, TWIST, and ZEB mRNA was lower in tumors than in healthy tissues. Vimentin was higher in triple-negative HBC (TNBC) and FMTs than in ER+ HBC and CMTs (p < 0.001). Membranous E-cadherin was higher in ER+ than in TNBCs (p < 0.001), whereas cytoplasmic E-cadherin was higher in TNBCs when compared with ER+ HBC (p < 0.001). A negative correlation between membranous and cytoplasmic E-cadherin was found in all three species. Ki-67 was higher in FMTs than in CMTs (p < 0.001), whereas CD44 was higher in CMTs than in FMTs (p < 0.001). These results confirmed a potential role of some markers as indicators of EMT, and suggested similarities between ER+ HBC and CMTs, and between TNBC and FMTs.

2.
Cells ; 10(2)2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33494218

RESUMO

Alzheimer's disease (AD) is the most common age-related neurodegenerative disorder in which learning, memory and cognitive functions decline progressively. Familial forms of AD (FAD) are caused by mutations in amyloid precursor protein (APP), presenilin 1 (PSEN1) and presenilin 2 (PSEN2) genes. Presenilin 1 (PS1) and its homologue, presenilin 2 (PS2), represent, alternatively, the catalytic core of the γ-secretase complex that, by cleaving APP, produces neurotoxic amyloid beta (Aß) peptides responsible for one of the histopathological hallmarks in AD brains, the amyloid plaques. Recently, PSEN1 FAD mutations have been associated with a loss-of-function phenotype. To investigate whether this finding can also be extended to PSEN2 FAD mutations, we studied two processes known to be modulated by PS2 and altered by FAD mutations: Ca2+ signaling and mitochondrial function. By exploiting neurons derived from a PSEN2 knock-out (PS2-/-) mouse model, we found that, upon IP3-generating stimulation, cytosolic Ca2+ handling is not altered, compared to wild-type cells, while mitochondrial Ca2+ uptake is strongly compromised. Accordingly, PS2-/- neurons show a marked reduction in endoplasmic reticulum-mitochondria apposition and a slight alteration in mitochondrial respiration, whereas mitochondrial membrane potential, and organelle morphology and number appear unchanged. Thus, although some alterations in mitochondrial function appear to be shared between PS2-/- and FAD-PS2-expressing neurons, the mechanisms leading to these defects are quite distinct between the two models. Taken together, our data appear to be difficult to reconcile with the proposal that FAD-PS2 mutants are loss-of-function, whereas the concept that PS2 plays a key role in sustaining mitochondrial function is here confirmed.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Sinalização do Cálcio , Mitocôndrias/metabolismo , Presenilina-2/deficiência , Trifosfato de Adenosina/biossíntese , Animais , Respiração Celular , Ciclo do Ácido Cítrico , Citosol/metabolismo , Retículo Endoplasmático/metabolismo , Glicólise , Potencial da Membrana Mitocondrial , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo , Fosforilação Oxidativa , Fenótipo , Presenilina-2/metabolismo
3.
Vet Pathol ; 57(6): 774-790, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32807036

RESUMO

Mammary cancer is a common neoplasm in women, dogs, and cats that still represents a therapeutic challenge. Wnt/ß-catenin and Hippo pathways are involved in tumor progression, cell differentiation, and metastasis. The aim of this study was to evaluate mRNA and protein expression of molecules involved in these pathways in human (HBC), canine (CMT), and feline mammary tumors (FMT). Real-time quantitative polymerase chain reaction (qPCR) for ß-catenin, CCND1, YAP, TAZ, CTGF, and ANKRD1, western blotting for YAP, TAZ, and ß-catenin, and immunohistochemistry for estrogen receptor (ER), progesterone receptor (PR), ERBB2, ß-catenin, and YAP/TAZ were performed on mammary tumor tissues. The protein expression of active ß-catenin was higher in tumors than in healthy tissues in all 3 species. The mRNA expression of the downstream gene CCND1 was increased in HBC ER+ and CMTs compared to healthy tissues. Membranous and cytoplasmic protein expression of ß-catenin were strongly negatively correlated in all 3 species. Tumors showed an increased protein expression of YAP/TAZ when compared to healthy tissues. Notably, YAP/TAZ expression was higher in triple negative breast cancers when compared to HBC ER+ and in FMTs when compared to CMTs. The mRNA expression of ß-catenin, YAP, TAZ, CTGF, and ANKRD1 was not different between tumors and healthy mammary gland in the 3 species. This study demonstrates deregulation of Wnt/ß-catenin and Hippo pathways in mammary tumors, which was more evident at the protein rather than the mRNA level. Wnt/ß-catenin and Hippo pathways seem to be involved in mammary carcinogenesis and therefore represent interesting therapeutic targets that should be further investigated.


Assuntos
Neoplasias da Mama , Doenças do Gato , Doenças do Cão , Neoplasias Mamárias Animais , Animais , Neoplasias da Mama/veterinária , Gatos , Transformação Celular Neoplásica , Cães , Feminino , Via de Sinalização Hippo , Humanos , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , beta Catenina
4.
Hum Mol Genet ; 27(6): 969-984, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29351619

RESUMO

Limb-girdle muscular dystrophy type 2D (LGMD2D) is a rare autosomal-recessive disease, affecting striated muscle, due to mutation of SGCA, the gene coding for α-sarcoglycan. Nowadays, more than 50 different SGCA missense mutations have been reported. They are supposed to impact folding and trafficking of α-sarcoglycan because the defective polypeptide, although potentially functional, is recognized and disposed of by the quality control of the cell. The secondary reduction of α-sarcoglycan partners, ß-, γ- and δ-sarcoglycan, disrupts a key membrane complex that, associated to dystrophin, contributes to assure sarcolemma stability during muscle contraction. The complex deficiency is responsible for muscle wasting and the development of a severe form of dystrophy. Here, we show that the application of small molecules developed to rescue ΔF508-CFTR trafficking, and known as CFTR correctors, also improved the maturation of several α-sarcoglycan mutants that were consequently rescued at the plasma membrane. Remarkably, in myotubes from a patient with LGMD2D, treatment with CFTR correctors induced the proper re-localization of the whole sarcoglycan complex, with a consequent reduction of sarcolemma fragility. Although the mechanism of action of CFTR correctors on defective α-sarcoglycan needs further investigation, this is the first report showing a quantitative and functional recovery of the sarcoglycan-complex in human pathologic samples, upon small molecule treatment. It represents the proof of principle of a pharmacological strategy that acts on the sarcoglycan maturation process and we believe it has a great potential to develop as a cure for most of the patients with LGMD2D.


Assuntos
Sarcoglicanopatias/tratamento farmacológico , Sarcoglicanas/metabolismo , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Células HEK293 , Humanos , Contração Muscular , Músculo Esquelético/metabolismo , Músculo Estriado/metabolismo , Mutação de Sentido Incorreto , Estudo de Prova de Conceito , Sarcoglicanopatias/genética , Sarcoglicanopatias/metabolismo , Sarcoglicanas/genética
5.
Biochim Biophys Acta Gen Subj ; 1861(11 Pt A): 2802-2810, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28778487

RESUMO

BACKGROUND: Conversely to common coated iron oxide nanoparticles, novel naked surface active maghemite nanoparticles (SAMNs) can covalently bind DNA. Plasmid (pDNA) harboring the coding gene for GFP was directly chemisorbed onto SAMNs, leading to a novel DNA nanovector (SAMN@pDNA). The spontaneous internalization of SAMN@pDNA into cells was compared with an extensively studied fluorescent SAMN derivative (SAMN@RITC). Moreover, the transfection efficiency of SAMN@pDNA was evaluated and explained by computational model. METHODS: SAMN@pDNA was prepared and characterized by spectroscopic and computational methods, and molecular dynamic simulation. The size and hydrodynamic properties of SAMN@pDNA and SAMN@RITC were studied by electron transmission microscopy, light scattering and zeta-potential. The two nanomaterials were tested by confocal scanning microscopy on equine peripheral blood-derived mesenchymal stem cells (ePB-MSCs) and GFP expression by SAMN@pDNA was determined. RESULTS: Nanomaterials characterized by similar hydrodynamic properties were successfully internalized and stored into mesenchymal stem cells. Transfection by SAMN@pDNA occurred and GFP expression was higher than lipofectamine procedure, even in the absence of an external magnetic field. A computational model clarified that transfection efficiency can be ascribed to DNA availability inside cells. CONCLUSIONS: Direct covalent binding of DNA on naked magnetic nanoparticles led to an extremely robust gene delivery tool. Hydrodynamic and chemical-physical properties of SAMN@pDNA were responsible of the successful uptake by cells and of the efficiency of GFP gene transfection. GENERAL SIGNIFICANCE: SAMNs are characterized by colloidal stability, excellent cell uptake, persistence in the host cells, low toxicity and are proposed as novel intelligent DNA nanovectors for efficient cell transfection.


Assuntos
DNA/química , Técnicas de Transferência de Genes , Nanopartículas/química , Transfecção/métodos , Fenômenos Biofísicos , Coloides/química , DNA/genética , Compostos Férricos/química , Vetores Genéticos , Humanos , Microscopia Eletrônica de Transmissão , Nanopartículas/ultraestrutura , Tamanho da Partícula , Plasmídeos/química , Plasmídeos/genética
6.
Vet Res Commun ; 41(3): 211-217, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28589421

RESUMO

The Tat protein is able to translocate through the plasma membrane and when it is fused with other peptides may acts as a protein transduction system. This ability appears particularly interesting to induce tissue-specific differentiation when the Tat protein is associated to transcription factors. In the present work, the potential of the complex Tat-MyoD in inducing equine peripheral blood mesenchymal stem cells (PB-MSCs) towards the myogenic fate, was evaluated. Results showed that the internalization process of Tat-MyoD happens only in serum free conditions and that the nuclear localization of the fused complex is observed after 15 hours of incubation. However, the supplement of Tat-MyoD only was not sufficient to induce myogenesis and, therefore, in order to achieve the myogenic differentiation of PB-MSCs, conditioned medium from C2C12 cells was added without direct contact. Real Time PCR and immunofluorescence methods evaluated the establishment of a myogenic program. Our results suggest that TAT- transduction of Tat-MyoD, when supported by conditioned medium, represents a useful methodology to induce myogenic differentiation.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Produtos do Gene tat/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Proteína MyoD/farmacologia , Animais , Meios de Cultivo Condicionados/farmacologia , Cavalos , Células-Tronco Mesenquimais/fisiologia , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Transdução de Sinais
7.
Cytotherapy ; 18(4): 562-9, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26971684

RESUMO

BACKGROUND AIMS: Several cytokines and growth factors play an essential role in skin regeneration and epithelial-like stem cells (EpSCs) have beneficial effects on wound healing in horses. However, there are no reports available on the expression of these growth factors and cytokines after EpSC therapy. METHODS: Wounds of 6 cm(2) were induced in the gluteus region of 6 horses and treated with (i) autologous EpSCs, (ii) allogeneic EpSCs, (iii) vehicle treatment or (iv) untreated control. Real time polymerase chain reaction was performed on tissue biopsies taken 1 and 5 weeks after these treatments to evaluate mRNA expression of interferon (IFN)-γ, interleukin (IL)-6, vascular endothelial growth factor (VEGF), epidermal growth factor (EGF), insulin-like growth factor (IGF)-1 and epidermal keratin (eKER). RESULTS: One week after treatments, mRNA levels of IL-6 (P = 0.012) and VEGF (P = 0.008) were higher in allogeneic EpSC-treated wounds compared with controls. Also, mRNA levels of IGF-1 were higher at 1 week in both autologous (P = 0.027) and allogeneic (P = 0.035) EpSC-treated wounds. At week 5, all EpSC- and vehicle-treated wounds demonstrated significantly higher IFN-γ, VEGF and eKER mRNA expression compared with controls and compared with their respective levels at week 1. CONCLUSIONS: Equine wounds treated with allogeneic EpSCs demonstrate a significant increase in mRNA expression of IL-6, VEGF and IGF-1 in the acute phase. In the longer term, an increase in IFN-γ, VEGF and eKER mRNA was detected in the wounds treated with allogenic EpSCs, autologous EpSCs or their vehicle.


Assuntos
Biomarcadores/metabolismo , Células Epiteliais/transplante , Transplante de Células-Tronco/métodos , Cicatrização/genética , Animais , Biomarcadores/análise , Citocinas/genética , Citocinas/metabolismo , Epiderme/metabolismo , Células Epiteliais/metabolismo , Cavalos , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , RNA Mensageiro/análise , RNA Mensageiro/metabolismo , Regeneração/genética , Pele/metabolismo , Células-Tronco/metabolismo , Transplante Autólogo
8.
Vet Res Commun ; 40(1): 39-48, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26757735

RESUMO

Tendons regenerate poorly due to a dense extracellular matrix and low cellularity. Cellular therapies aim to improve tendon repair using mesenchymal stem cells and tenocytes; however, a current limitation is the low proliferative potential of tenocytes in cases of severe trauma. The purpose of this study was to develop a method useful in veterinary medicine to improve the differentiation of Peripheral Blood equine mesenchymal stem cells (PB-MSCs) into tenocytes. PB-MSCs were used to study the effects of the addition of some growth factors (GFs) as TGFß3 (transforming growth factor), EGF2 (Epidermal growth factor), bFGF2 (Fibroblast growth factor) and IGF-1 (insulin-like growth factor) in presence or without Low Level Laser Technology (LLLT) on the mRNA expression levels of genes important in the tenogenic induction as Early Growth Response Protein-1 (EGR1), Tenascin (TNC) and Decorin (DCN). The singular addition of GFs did not show any influence on the mRNA expression of tenogenic genes whereas the specific combinations that arrested cell proliferation in favour of differentiation were the following: bFGF2 + TGFß3 and bFGF2 + TGFß3 + LLLT. Indeed, the supplement of bFGF2 and TGFß3 significantly upregulated the expression of Early Growth Response Protein-1 and Decorin, while the use of LLLT induced a significant increase of Tenascin C levels. In conclusion, the present study might furnish significant suggestions for developing an efficient approach for tenocyte induction since the external administration of bFGF2 and TGFß3, along with LLLT, influences the differentiation of PB-MSCs towards the tenogenic fate.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Cavalos , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Traumatismos dos Tendões/veterinária , Tendões/citologia , Animais , Proliferação de Células , Células Cultivadas , Decorina/genética , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteínas da Matriz Extracelular/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Terapia com Luz de Baixa Intensidade , Traumatismos dos Tendões/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA