Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Med (Lausanne) ; 11: 1355799, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38698778

RESUMO

Introduction: Daily solar ultraviolet (UV) radiation has an important impact on skin health. Understanding the initial events of the UV-induced response is critical to prevent deleterious conditions. However, studies in human volunteers have ethical, technical, and economic implications that make skin equivalents a valuable platform to investigate mechanisms related to UV exposure to the skin. In vitro human skin equivalents can recreate the structure and function of in vivo human skin and represent a valuable tool for academic and industrial applications. Previous studies have utilised non-pigmented full-thickness or pigmented epidermal skin equivalents to investigate skin responses to UV exposure. However, these do not recapitulate the dermal-epidermal crosstalk and the melanocyte role in photoprotection that occurs in vivo. In addition, the UV radiation used in these studies is generally not physiologically representative of real-world UV exposure. Methods: Well-characterised pigmented and non-pigmented skin equivalents that contain human dermal fibroblasts, endogenous secreted extracellular matrix proteins (ECM) and a well-differentiated and stratified epidermis have been developed. These constructs were exposed to UV radiation for ×5 consecutive days with a physiologically relevant UV dose and subsequently analysed using appropriate end-points to ascertain photodamage to the skin. Results: We have described that repeated irradiation of full-thickness human skin equivalents in a controlled laboratory environment can recreate UV-associated responses in vitro, mirroring those found in photoexposed native human skin: morphological damage, tanning, alterations in epidermal apoptosis, DNA lesions, proliferation, inflammatory response, and ECM-remodelling. Discussion: We have found a differential response when using the same UV doses in non-pigmented and pigmented full-thickness skin equivalents, emphasising the role of melanocytes in photoprotection.

2.
Cells ; 12(19)2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37830622

RESUMO

It is widely recognised that cells respond to their microenvironment, which has implications for cell culture practices. Growth cues provided by 2D cell culture substrates are far removed from native 3D tissue structure in vivo. Geometry is one of many factors that differs between in vitro culture and in vivo cellular environments. Cultured cells are far removed from their native counterparts and lose some of their predictive capability and reliability. In this study, we examine the cellular processes that occur when a cell is cultured on 2D or 3D surfaces for a short period of 8 days prior to its use in functional assays, which we term: "priming". We follow the process of mechanotransduction from cytoskeletal alterations, to changes to nuclear structure, leading to alterations in gene expression, protein expression and improved functional capabilities. In this study, we utilise HepG2 cells as a hepatocyte model cell line, due to their robustness for drug toxicity screening. Here, we demonstrate enhanced functionality and improved drug toxicity profiles that better reflect the in vivo clinical response. However, findings more broadly reflect in vitro cell culture practises across many areas of cell biology, demonstrating the fundamental impact of mechanotransduction in bioengineering and cell biology.


Assuntos
Microambiente Celular , Mecanotransdução Celular , Humanos , Reprodutibilidade dos Testes , Hepatócitos/metabolismo , Linhagem Celular , Células Hep G2
3.
Exp Dermatol ; 32(5): 620-631, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36695185

RESUMO

Skin ageing is an intricate physiological process affected by intrinsic and extrinsic factors. There is a demand to understand how the skin changes with age and photoexposure in individuals with Fitzpatrick skin types I-III due to accelerated photoageing and the risk of cutaneous malignancies. To assess the structural impact of intrinsic and extrinsic ageing, we analysed 14 skin parameters from the photoprotected buttock and photoexposed dorsal forearm of young and ageing females with Fitzpatrick skin types II-III (n = 20) using histomorphic techniques. Whilst the minimum viable epidermis (Emin ) remained constant (Q > 0.05), the maximum viable epidermis (Emax ) was decreased by both age and photoexposure (Q ≤ 0.05), which suggests that differences in epidermal thickness are attributed to changes in the dermal-epidermal junction (DEJ). Changes in Emax were not affected by epidermal cell proliferation. For the first time, we investigated the basal keratinocyte morphology with age and photoexposure. Basal keratinocytes had an increased cell size, cellular height and a more columnar phenotype in photoexposed sites of young and ageing individuals (Q ≤ 0.05), however no significant differences were observed with age. Some of the most striking changes were observed in the DEJ, and a decrease in the interdigitation index was observed with both age and photoexposure (Q ≤ 0.001), accompanied by a decreased height of rête ridges and dermal papilla. Interestingly, young photoexposed skin was comparable to ageing skin across many parameters, and we hypothesise that this is due to accelerated photoageing. This study highlights the importance of skin care education and photoprotection from an early age.


Assuntos
Envelhecimento da Pele , Dermatopatias , Feminino , Humanos , Pele/patologia , Epiderme/fisiologia , Dermatopatias/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA