Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 49(45): 16498-16514, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33206073

RESUMO

Complexes with general formula [RuCl(η6-p-cymene)(P-NR-P)]X (R = CH2Py (Py = pyridine) - [1a]+, CH2Ph (Ph = phenyl) - [1b]+, Ph - [1c] and p-tol (p-tol = p-tolyl) - [1d]+; X = PF6- or BF4-) were evaluated as cytotoxic agents against two cancer cell lines (HeLa and MDA-MB-231). All metal complexes are active in the range of concentrations tested (up to 100 µmol L-1). The IC50 (µmol L-1) values for the metal complexes are lower than that found for cisplatin. The activities are up to 6- and 15-fold higher than cisplatin for HeLa and MDA-MB-231 cancer cell lines, respectively. Studies of DNA binding and DNA cleavage were performed. DNA binding studies revealed a modest hypochromic shift in the metal complexes electronic spectra, indicating a weak interaction with Kb values in the range of 1.7 × 103-1.6 × 104. Although the cleavage tests revealed that in the dark DNA is not a biological target for these metal complexes, upon blue light irradiation they are activated causing DNA cleavage. Electrochemical studies showed the presence of two independent redox processes, one attributed to the oxidation process of Ru2+ → Ru3+ (EC process) and the other one to the reduction of Ru2+ → Ru1+, which is further reduced to Ru0 (ECE mechanism). In both processes, coupled chemical reactions were observed. DFT calculations were performed to support the electrochemical/chemical behavior of the complexes. The reactivity of complex [1b]BF4 with CH3CN was evaluated and two complexes were isolated [2b]BF4 and [3b]BF4. The complex mer-[RuCl(CH3CN)3(P-NCH2Ph-P)]BF4 ([2b]BF4) was isolated after refluxing the precursor [1b]BF4 in CH3CN. Isomerization of [2b]BF4 in CH3CN resulted in the formation of fac-[RuCl(CH3CN)3(P-NCH2Ph-P)]BF4. An attempt to isolate the fac-isomer by adding diethyl ether was unsuccessful, and the complex [3b]BF4 was observed as the major component. The complex [Ru2(µ-Cl3)(CH3CN)2(P-NCH2Ph-P)2]BF4 ([3b]BF4) proved to be very stable and can be obtained from both the mer- and the fac-isomers. The molecular structures of [1b]BF4 and [3b]BF4 were solved by single-crystal X-ray diffraction.


Assuntos
Aminas/química , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Cimenos/química , Fosfinas/química , Rutênio/química , Neoplasias de Mama Triplo Negativas/patologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Teoria da Densidade Funcional , Eletroquímica , Células HeLa , Humanos
2.
Medchemcomm ; 10(3): 390-398, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30996857

RESUMO

Brazil has one of the largest biodiversities in the world. The search for new natural products extracted from the Brazilian flora may lead to the discovery of novel drugs with potential to treat infectious and other diseases. Here, we have investigated 9 lectins extracted and purified from the Northeastern Brazilian flora, from both leguminous species: Canavalia brasiliensis (ConBr), C. maritima (ConM), Dioclea lasiocarpa (DLasiL) and D. sclerocarpa (DSclerL), and algae Amansia multifida (AML), Bryothamniom seaforthii (BSL), Hypnea musciformis (HML), Meristiella echinocarpa (MEL) and Solieria filiformis (SfL). They were exposed to a panel of 18 different viruses, including HIV and influenza viruses. Several lectins showed highly potent antiviral activity, often within the low nanomolar range. DSclerL and DLasiL exhibited EC50 values (effective concentration of lectin required to inhibit virus-induced cytopathicity by 50%) of 9 nM to 46 nM for HIV-1 and respiratory syncytial virus (RSV), respectively, DLasiL also inhibited feline corona virus at an EC50 of 5 nM, and DSclerL, ConBr and ConM showed remarkably low EC50 values ranging from 0.4 to 6 nM against influenza A virus strain H3N2 and influenza B virus. For HIV, evidence pointed to the blockage of entry of the virus into its target cells as the underlying mechanism of antiviral action of these lectins. Overall, the most promising lectins based on their EC50 values were DLasiL, DSclerL, ConBr, ConM, SfL and HML. These novel findings indicate that lectins from the Brazilian flora may provide novel antiviral compounds with therapeutic potential.

3.
J Inorg Biochem ; 182: 83-91, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29452883

RESUMO

Nitric oxide has been involved in many key biological processes such as vasodilation, platelet aggregation, apoptosis, memory function, and this has drawn attention to the development of exogenous NO donors. Metallonitrosyl complexes are an important class of these compounds. Here, two new ruthenium nitrosyl complexes containing a thiocarbonyl ligand, with the formula cis-[Ru(phen)2(L)(NO)](PF6)3 (phen = phenantroline, L = thiourea or thiobenzamide), were synthesized and characterized by electronic spectroscopy, FTIR, NMR, mass spectrometry and voltammetric techniques. Theoretical calculations using Density Functional Theory (DFT) and Time-dependent Density Functional Theory (TD-DFT) were also used and further supported the characterizations of these complexes. An efficient release of nitric oxide by blue light was validated using a NO/HNO probe: 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, known as cPTIO. Interestingly, the complex containing thiourea cleaved DNA even in the dark, while both complexes showed great DNA photocleavage activity in blue light. This process might work mainly through NO and hydroxyl radical production. Additionally, these complexes showed promising vasodilator activity, whose mechanism of action was investigated using N-Nitro-l-arginine methyl ester hydrochloride (L-NAME) and 1H-[1,2,4]Oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) and compared to sodium nitroprusside. Both compounds were indeed NO-mediated heme-dependent activators of soluble guanylate cyclase. Additionally, they did not show any significant cytotoxicity against cancer cell lines U87 and GBM02. Altogether, these results supported both complexes having potential pharmacological applications that deserve further studies.


Assuntos
Clivagem do DNA/efeitos da radiação , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/efeitos da radiação , Luz , Compostos de Rutênio/química , Compostos de Rutênio/farmacologia , Vasodilatadores/química , Vasodilatadores/farmacologia , Estrutura Molecular , Óxido Nítrico/química , Rutênio/química
4.
J Inorg Biochem ; 175: 179-189, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28756174

RESUMO

The lectin DLasiL was isolated from seeds of the Dioclea lasiocarpa collected from the northeast coast of Brazil and characterized for the first time by mass spectrometry, DNA sequencing, inductively coupled plasma-mass spectrometry, electron paramagnetic resonance, and fluorescence spectroscopy. The structure of DLasiL lectin obtained by homology modelling suggested strong conservation of the dinuclear Ca/Mn and sugar-binding sites, and dependence of the solvent accessibility of tryptophan-88 on the oligomerisation state of the protein. DLasiL showed highly potent (low nanomolar) antiproliferative activity against several human carcinoma cell lines including A2780 (ovarian), A549 (lung), MCF-7 (breast) and PC3 (prostate), and was as, or more, potent than the lectins ConBr (Canavalia brasiliensis), ConM (Canavalia maritima) and DSclerL (Dioclea sclerocarpa) against A2780 and PC3 cells. Interestingly, DLasiL lectin caused a G2/M arrest in A2780 cells after 24h exposure, activating caspase 9 and delaying the on-set of apoptosis. Confocal microscopy showed that fluorescently-labelled DLasiL localized around the nuclei of A2780 cells at lectin doses of 0.5-2× IC50 and gave rise to enlarged nuclei and spreading of the cells at high doses. These data reveal the interesting antiproliferative activity of DLasiL lectin, and suggest that further investigations to explore the potential of DLasiL as a new anticancer agent are warranted.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Dioclea/química , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Lectinas de Plantas/farmacologia , Células A549 , Antineoplásicos Fitogênicos/química , Humanos , Células MCF-7 , Neoplasias/metabolismo , Neoplasias/patologia , Lectinas de Plantas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA