Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 4565, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35296755

RESUMO

Porcine skin is considered a de facto surrogate for human skin. However, this study shows that the mechanical characteristics of full thickness burned human skin are different from those of porcine skin. The study relies on five mechanical properties obtained from uniaxial tensile tests at loading rates relevant to surgery: two parameters of the Veronda-Westmann hyperelastic material model, ultimate tensile stress, ultimate tensile strain, and toughness of the skin samples. Univariate statistical analyses show that human and porcine skin properties are dissimilar (p < 0.01) for each loading rate. Multivariate classification involving the five mechanical properties using logistic regression can successfully separate the two skin types with a classification accuracy exceeding 95% for each loading rate individually as well as combined. The findings of this study are expected to guide the development of effective training protocols and high-fidelity simulators to train burn care providers.


Assuntos
Pele , Animais , Fenômenos Biomecânicos , Humanos , Estresse Mecânico , Suínos , Resistência à Tração
2.
Neurosurg Focus ; 38(3): E8, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25727230

RESUMO

OBJECT Bevacizumab (Avastin), an antibody to vascular endothelial growth factor (VEGF), alone or in combination with irinotecan (Camptosar [CPT-11]), is a promising treatment for recurrent glioblastoma. However, the intravenous (IV) administration of bevacizumab produces a number of systemic side effects, and the increase in survival it provides for patients with recurrent glioblastoma is still only a few months. Because bevacizumab is an antibody against VEGF, which is secreted into the extracellular milieu by glioma cells, the authors hypothesized that direct chronic intratumoral delivery techniques (i.e., convection-enhanced delivery [CED]) can be more effective than IV administration. To test this hypothesis, the authors compared outcomes for these routes of bevacizumab application with respect to animal survival, microvessel density (MVD), and inflammatory cell distribution. METHODS Two human glioma cell lines, U87 and U251, were used as sources of intracranial tumor cells. The glioma cell lines were implanted into the brains of mice in an orthotopic xenograft mouse tumor model. After 7 days, the mice were treated with one of the following: 1) vehicle, 2) CED bevacizumab, 3) IV bevacizumab, 4) intraperitoneal (IP) irinotecan, 5) CED bevacizumab plus IP irinotecan, or 6) IV bevacizumab plus IP irinotecan. Alzet micro-osmotic pumps were used to introduce bevacizumab directly into the tumor. Survival was monitored. Excised tumor tissue samples were immunostained to measure MVD and inflammatory cell and growth factor levels. RESULTS The results demonstrate that mice treated with CED of bevacizumab alone or in combination with irinotecan survived longer than those treated systemically; CED-treated animals survived 30% longer than IV-treated animals. In combination studies, CED bevacizumab plus CPT-11 increased survival by more than 90%, whereas IV bevacizumab plus CPT-11 increased survival by 40%. Furthermore, CED bevacizumab-treated tissues exhibited decreased MVD compared with that of IV-treated tissues. In additional studies, the infiltration of macrophages and dendritic cells into CED-treated animals were increased compared with those in IV-treated animals, suggesting a highly active inflammatory response taking place in CED-treated mice. CONCLUSIONS The administration of bevacizumab via CED increases survival over that of treatment with IV bevacizumab. Thus, CED of bevacizumab alone or in combination with chemotherapy can be an effective protocol for treating gliomas.


Assuntos
Inibidores da Angiogênese/administração & dosagem , Bevacizumab/administração & dosagem , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/mortalidade , Glioma/tratamento farmacológico , Glioma/mortalidade , Animais , Antineoplásicos Fitogênicos/administração & dosagem , Camptotecina/administração & dosagem , Camptotecina/análogos & derivados , Linhagem Celular Tumoral , Células Dendríticas/patologia , Modelos Animais de Doenças , Sistemas de Liberação de Medicamentos , Quimioterapia Combinada , Humanos , Irinotecano , Camundongos , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Fatores de Tempo , Ensaios Antitumorais Modelo de Xenoenxerto
3.
J Am Heart Assoc ; 3(3): e000968, 2014 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-24837588

RESUMO

BACKGROUND: Cerebral arteriovenous malformation (AVM) is a vascular disease exhibiting abnormal blood vessel morphology and function. miR-18a ameliorates the abnormal characteristics of AVM-derived brain endothelial cells (AVM-BEC) without the use of transfection reagents. Hence, our aim was to identify the mechanisms by which miR-18a is internalized by AVM-BEC. Since AVM-BEC overexpress RNA-binding protein Argonaute-2 (Ago-2) we explored the clinical potential of Ago-2 as a systemic miRNA carrier. METHODS AND RESULTS: Primary cultures of AVM-BEC were isolated from surgical specimens and tested for endogenous miR-18a levels using qPCR. Conditioned media (CM) was derived from AVM-BEC cultures (AVM-BEC-CM). AVM-BEC-CM significantly enhanced miR-18a internalization. Ago-2 was detected using western blotting and immunostaining techniques. Ago-2 was highly expressed in AVM-BEC; and siAgo-2 decreased miR-18a entry into brain-derived endothelial cells. Only brain-derived endothelial cells were responsive to the Ago-2/miR-18a complex and not other cell types tested. Secreted products (eg, thrombospondin-1 [TSP-1]) were tested using ELISA. Brain endothelial cells treated with the Ago-2/miR-18a complex in vitro increased TSP-1 secretion. In the in vivo angiogenesis glioma model, animals were treated with miR-18a in combination with Ago-2. Plasma was obtained and tested for TSP-1 and vascular endothelial growth factor (VEGF)-A. In this angiogenesis model, the Ago-2/miR-18a complex caused a significant increase in TSP-1 and decrease in VEGF-A secretion in the plasma. CONCLUSIONS: Ago-2 facilitates miR-18a entry into brain endothelial cells in vitro and in vivo. This study highlights the clinical potential of Ago-2 as a miRNA delivery platform for the treatment of brain vascular diseases.


Assuntos
Proteínas Argonautas/fisiologia , Endotélio Vascular/metabolismo , Malformações Arteriovenosas Intracranianas/metabolismo , MicroRNAs/metabolismo , Animais , Western Blotting , Encéfalo/irrigação sanguínea , Encéfalo/citologia , Encéfalo/metabolismo , Células Cultivadas , Endotélio Vascular/citologia , Humanos , Malformações Arteriovenosas Intracranianas/fisiopatologia , Masculino , Camundongos Nus , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA