Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Transl Med ; 22(1): 50, 2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216965

RESUMO

With the increase of aging population and prevalence of obesity, the incidence of cardiovascular disease (CVD) and cancer has also presented an increasing tendency. These two different diseases, which share some common risk factors. Relevant studies in the field of reversing Cardio-Oncology have shown that the phenotype of CVD has a significant adverse effect on tumor prognosis, which is mainly manifested by a positive correlation between CVD and malignant progression of concomitant tumors. This distal crosstalk and the link between different diseases makes us aware of the importance of diagnosis, prediction, management and personalized treatment of systemic diseases. The circulatory system bridges the interaction between CVD and cancer, which suggests that we need to fully consider the systemic and holistic characteristics of these two diseases in the process of clinical treatment. The circulating exosome-miRNAs has been intrinsically associated with CVD -related regulation, which has become one of the focuses on clinical and basic research (as biomarker). The changes in the expression profiles of cardiovascular disease-associated miRNAs (Cardio-miRNAs) may adversely affect concomitant tumors. In this article, we sorted and screened CVD and tumor-related miRNA data based on literature, then summarized their commonalities and characteristics (several important pathways), and further discussed the conclusions of Cardio-Oncology related experimental studies. We take a holistic approach to considering CVD as a risk factor for tumor malignancy, which provides an in-depth analysis of the various regulatory mechanisms or pathways involved in the dual attribute miRNAs (Cardio-/Onco-miRNAs). These mechanisms will be key to revealing the systemic effects of CVD on tumors and highlight the holistic nature of different diseases. Therefore, the Cardio-miRNAs should be given great attention from researchers in the field of CVD and tumors, which might become new targets for tumor treatment. Meanwhile, based on the principles of precision medicine (such as the predictive preventive personalized medicine, 3PM) and reverse Cardio-oncology to better improve individual outcomes, we should consider developing personalized medicine and systemic therapy for cancer from the perspective of protecting cardiovascular function.


Assuntos
Doenças Cardiovasculares , MicroRNAs , Neoplasias , Humanos , Idoso , MicroRNAs/genética , MicroRNAs/metabolismo , Doenças Cardiovasculares/epidemiologia , Cardio-Oncologia , Oncologia , Neoplasias/genética
2.
Oxid Med Cell Longev ; 2023: 5885203, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36846720

RESUMO

Kidney renal clear cell carcinoma (KIRC) is one of the most hazardous tumors in the urinary system. The regulation of oxygen consumption in renal clear cell carcinoma is a consequence of adaptive reprogramming of oxidative metabolism in tumor cells. APPL1 is a signaling adaptor involved in cell survival, oxidative stress, inflammation, and energy metabolism. However, the correlation of APPL1 with regulatory T cell (Treg) infiltration and prognostic value in KIRC remain unclear. In this study, we comprehensively predicted the potential function and prognostic value of APPL1 in KIRC. For KIRC patients, relatively low expression of APPL1 was associated with high degree of metastasis, pathological stage, and shorter overall time or poor prognosis. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses suggested that low expression of APPL1 may be adapted to the malignant progression of tumors via affecting oxygen-consuming metabolism. In addition, the expression level of APPL1 was negatively correlated with Treg cell infiltration and chemotherapy sensitivity, which indicated that APPL1 may regulate the tumor immune infiltration and chemotherapy resistance by decrease oxygen-consuming metabolic process in KIRC. Therefore, APPL1 may become one of the important prognostic factors, and it may serve as a candidate prognostic biomarker in KIRC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Linfócitos T Reguladores , Prognóstico , Biomarcadores , Proteínas Adaptadoras de Transdução de Sinal
3.
Front Immunol ; 11: 414, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32210977

RESUMO

Signal transducer and activator of transcription 3 (STAT3) is implicated in inflammation processing, but the mechanism of its regulation mostly remains limited to Janus kinase (JAK)-mediated phosphorylation. Although AMP-activated protein kinase (AMPK)-mediated STAT3 inactivation has got documented, the molecular signaling cascade connecting STAT3 inactivation and the anti-inflammatory role of AMPK is far from established. In the present study, we addressed the interplay between AMPK and STAT3, and revealed the important role of STAT3 inactivation in the anti-inflammatory function of AMPK in lipopolysaccharide-stressed macrophages and mice. Firstly, we found that pharmacological inhibition of STAT3 can improve the anti-inflammatory effect of AMPK in wild-type mice, and the expression of STAT3 in macrophage of mice is a prerequisite for the anti-inflammatory effect of AMPK. As to the molecular signaling cascade linking AMPK to STAT3, we disclosed that AMPK suppressed STAT3 not only by attenuating JAK signaling but also by activating nuclear factor erythroid-2-related factor-2 (Nrf2), a redox-regulating transcription factor, which consequently increased the expression of small heterodimer protein (SHP), thus repressing the transcriptional activity of STAT3. In summary, this study provided a unique set of evidence showing the relationship between AMPK and STAT3 signaling and explored a new mechanism of AMPK-driven STAT3 inactivation that involves Nrf2-SHP signaling cascade. These findings expand our understanding of the interplay between pro- and anti-inflammatory signaling pathways and are beneficial for the therapeutic development of sepsis treatments.


Assuntos
Fator 2 Relacionado a NF-E2/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Fator de Transcrição STAT3/metabolismo , Choque Séptico/metabolismo , Adenilato Quinase/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Humanos , Lipopolissacarídeos/imunologia , Camundongos , Camundongos Endogâmicos ICR , Camundongos Knockout , Células RAW 264.7 , RNA Interferente Pequeno/genética , Fator de Transcrição STAT3/genética , Transdução de Sinais
4.
J Biol Chem ; 295(14): 4451-4463, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32047109

RESUMO

Oxidative stress-induced DNA damage, the senescence-associated secretory phenotype (SASP), and impaired autophagy all are general features of senescent cells. However, the cross-talk among these events and processes is not fully understood. Here, using NIH3T3 cells exposed to hydrogen peroxide stress, we show that stress-induced DNA damage provokes the SASP largely via cytosolic chromatin fragment (CCF) formation, which activates a cascade comprising cGMP-AMP synthase (cGAS), stimulator of interferon genes protein (STING), NF-κB, and SASP, and that autolysosomal function inhibits this cascade. We found that CCFs accumulate in senescent cells with activated cGAS-STING-NF-κB signaling, promoting SASP and cellular senescence. We also present evidence that the persistent accumulation of CCFs in prematurely senescent cells is partially associated with a defect in DNA-degrading activity in autolysosomes and reduced abundance of activated DNase 2α. Intriguingly, we found that metformin- or rapamycin-induced activation of autophagy significantly lessened the size and levels of CCFs and repressed the activation of the cGAS-STING-NF-κB-SASP cascade and cellular senescence. These effects of autophagy activators indicated that autolysosomal function contributes to CCF clearance and SASP suppression, further supported by the fact that the lysosome inhibitor bafilomycin A1 blocked the role of autophagy-mediated CCF clearance and senescence repression.


Assuntos
Senescência Celular , Cromatina/metabolismo , Lisossomos/metabolismo , Estresse Oxidativo , Animais , Autofagia/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , GMP Cíclico/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Dano ao DNA/efeitos dos fármacos , Endodesoxirribonucleases/metabolismo , Peróxido de Hidrogênio/farmacologia , Interleucina-6/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , NF-kappa B/metabolismo , Células NIH 3T3 , Nucleotidiltransferases/antagonistas & inibidores , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA