Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2400307, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38657273

RESUMO

The advancement of message RNA (mRNA) -based immunotherapies for cancer is highly dependent on the effective delivery of RNA (Ribonucleic) payloads using ionizable lipid nanoparticles (LNPs). However, the clinical application of these therapies is hindered by variable mRNA expression among different cancer types and the risk of systemic toxicity. The transient expression profile of mRNA further complicates this issue, necessitating frequent dosing and thus increasing the potential for adverse effects. Addressing these challenges, a high-throughput combinatorial method is utilized to synthesize and screen LNPs that efficiently deliver circular RNA (circRNA) to lung tumors. The lead LNP, H1L1A1B3, demonstrates a fourfold increase in circRNA transfection efficiency in lung cancer cells over ALC-0315, the industry-standard LNPs, while providing potent immune activation. A single intratumoral injection of H1L1A1B3 LNPs, loaded with circRNA encoding interleukin-12 (IL-12), induces a robust immune response in a Lewis lung carcinoma model, leading to marked tumor regression. Immunological profiling of treated tumors reveals substantial increments in CD45+ leukocytes and enhances infiltration of CD8+ T cells, underscoring the ability of H1L1A1B3 LNPs to modulate the tumor microenvironment favorably. These results highlight the potential of tailored LNP platforms to advance RNA drug delivery for cancer therapy, broadening the prospects for RNA immunotherapeutics.

2.
J Cardiovasc Pharmacol ; 80(3): 407-416, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35853202

RESUMO

ABSTRACT: Cardiovascular disease is responsible for the largest number of deaths worldwide, and atherosclerosis is the primary cause. Apoptotic cell accumulation in atherosclerotic plaques leads to necrotic core formation and plaque rupture. Emerging findings show that the progression of atherosclerosis appears to suppress the elimination of apoptotic cells. Mechanistically, the reduced edibility of apoptotic cells, insufficient phagocytic capacity of phagocytes, downregulation of bridging molecules, and dysfunction in the polarization of macrophages lead to impaired efferocytosis in atherosclerotic plaques. This review focuses on the characteristics of efferocytosis in plaques and the therapeutic strategies aimed at promoting efferocytosis in atherosclerosis, which would provide novel insights for the development of antiatherosclerotic drugs based on efferocytosis.


Assuntos
Aterosclerose , Placa Aterosclerótica , Apoptose/fisiologia , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Humanos , Macrófagos/metabolismo , Fagocitose/fisiologia , Placa Aterosclerótica/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA