Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(8): e2314914121, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38346202

RESUMO

Mavacamten is a FDA-approved small-molecule therapeutic designed to regulate cardiac function at the sarcomere level by selectively but reversibly inhibiting the enzymatic activity of myosin. It shifts myosin toward ordered off states close to the thick filament backbone. It remains elusive whether these myosin heads in the off state(s) can be recruited in response to physiological stimuli when required to boost cardiac output. We show that cardiac myosins stabilized in these off state(s) by mavacamten are recruitable by 1) Ca2+, 2) increased chronotropy [heart rate (HR)], 3) stretch, and 4) ß-adrenergic (ß-AR) stimulation, all known physiological inotropic interventions. At the molecular level, we show that Ca2+ increases myosin ATPase activity by shifting mavacamten-stabilized myosin heads from the inactive super-relaxed state to the active disordered relaxed state. At the myofilament level, both Ca2+ and passive lengthening can shift mavacamten-ordered off myosin heads from positions close to the thick filament backbone to disordered on states closer to the thin filaments. In isolated rat cardiomyocytes, increased stimulation rates enhanced shortening fraction in mavacamten-treated cells. This observation was confirmed in vivo in telemetered rats, where left-ventricular dP/dtmax, an index of inotropy, increased with HR in mavacamten-treated animals. Finally, we show that ß-AR stimulation in vivo increases left-ventricular function and stroke volume in the setting of mavacamten. Our data demonstrate that the mavacamten-promoted off states of myosin in the thick filament are at least partially activable, thus preserving cardiac reserve mechanisms.


Assuntos
Miócitos Cardíacos , Miosinas , Uracila/análogos & derivados , Animais , Ratos , Benzilaminas/farmacologia , Contração Muscular
2.
Proc Natl Acad Sci U S A ; 120(23): e2221244120, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37252999

RESUMO

Missense variant Ile79Asn in human cardiac troponin T (cTnT-I79N) has been associated with hypertrophic cardiomyopathy and sudden cardiac arrest in juveniles. cTnT-I79N is located in the cTnT N-terminal (TnT1) loop region and is known for its pathological and prognostic relevance. A recent structural study revealed that I79 is part of a hydrophobic interface between the TnT1 loop and actin, which stabilizes the relaxed (OFF) state of the cardiac thin filament. Given the importance of understanding the role of TnT1 loop region in Ca2+ regulation of the cardiac thin filament along with the underlying mechanisms of cTnT-I79N-linked pathogenesis, we investigated the effects of cTnT-I79N on cardiac myofilament function. Transgenic I79N (Tg-I79N) muscle bundles displayed increased myofilament Ca2+ sensitivity, smaller myofilament lattice spacing, and slower crossbridge kinetics. These findings can be attributed to destabilization of the cardiac thin filament's relaxed state resulting in an increased number of crossbridges during Ca2+ activation. Additionally, in the low Ca2+-relaxed state (pCa8), we showed that more myosin heads are in the disordered-relaxed state (DRX) that are more likely to interact with actin in cTnT-I79N muscle bundles. Dysregulation of the myosin super-relaxed state (SRX) and the SRX/DRX equilibrium in cTnT-I79N muscle bundles likely result in increased mobility of myosin heads at pCa8, enhanced actomyosin interactions as evidenced by increased active force at low Ca2+, and increased sinusoidal stiffness. These findings point to a mechanism whereby cTnT-I79N weakens the interaction of the TnT1 loop with the actin filament, which in turn destabilizes the relaxed state of the cardiac thin filament.


Assuntos
Miofibrilas , Troponina T , Humanos , Miofibrilas/genética , Miofibrilas/patologia , Troponina T/genética , Troponina T/química , Actinas/genética , Mutação , Citoesqueleto de Actina/genética , Miosinas , Cálcio
3.
Proc Natl Acad Sci U S A ; 120(5): e2207615120, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36696446

RESUMO

Contraction in striated muscle is initiated by calcium binding to troponin complexes, but it is now understood that dynamic transition of myosin between resting, ordered OFF states on thick filaments and active, disordered ON states that can bind to thin filaments is critical in regulating muscle contractility. These structural OFF to ON transitions of myosin are widely assumed to correspond to transitions from the biochemically defined, energy-sparing, super-relaxed (SRX) state to the higher ATPase disordered-relaxed (DRX) state. Here we examined the effect of 2'-deoxy-ATP (dATP), a naturally occurring energy substrate for myosin, on the structural OFF to ON transitions of myosin motors in porcine cardiac muscle thick filaments. Small-angle X-ray diffraction revealed that titrating dATP in relaxation solutions progressively moves the myosin heads from ordered OFF states on the thick filament backbone to disordered ON states closer to thin filaments. Importantly, we found that the structural OFF to ON transitions are not equivalent to the biochemically defined SRX to DRX transitions and that the dATP-induced structural OFF to ON transitions of myosin motors in relaxed muscle are strongly correlated with submaximal force augmentation by dATP. These results indicate that structural OFF to ON transitions of myosin in relaxed muscle can predict the level of force attained in calcium-activated cardiac muscle. Computational modeling and stiffness measurements suggest a final step in the OFF to ON transition may involve a subset of DRX myosins that form weakly bound cross-bridges prior to becoming active force-producing cross-bridges.


Assuntos
Cálcio , Músculo Estriado , Animais , Suínos , Cálcio/metabolismo , Miocárdio/metabolismo , Miosinas/metabolismo , Músculo Esquelético/metabolismo , Músculo Estriado/metabolismo , Cálcio da Dieta
4.
Int J Mol Sci ; 23(23)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36499408

RESUMO

Myosin cross-bridges dissociate from actin following Mg2+-adenosine triphosphate (MgATP) binding. Myosin hydrolyses MgATP into inorganic phosphate (Pi) and Mg2+-adenosine diphosphate (ADP), and release of these hydrolysis products drives chemo-mechanical energy transitions within the cross-bridge cycle to power muscle contraction. Some forms of heart disease are associated with metabolic or enzymatic dysregulation of the MgATP-MgADP nucleotide pool, resulting in elevated cytosolic [MgADP] and impaired muscle relaxation. We investigated the mechanical and structural effects of increasing [MgADP] in permeabilized myocardial strips from porcine left ventricle samples. Sarcomere length was set to 2.0 µm at 28 °C, and all solutions contained 3% dextran T-500 to compress myofilament lattice spacing to near-physiological values. Under relaxing low [Ca2+] conditions (pCa 8.0, where pCa = -log10[Ca2+]), tension increased as [MgADP] increased from 0-5 mM. Complementary small-angle X-ray diffraction measurements show that the equatorial intensity ratio, I1,1/I1,0, also increased as [MgADP] increased from 0 to 5 mM, indicating myosin head movement away from the thick-filament backbone towards the thin-filament. Ca2+-activated force-pCa measurements show that Ca2+-sensitivity of contraction increased with 5 mM MgADP, compared to 0 mM MgADP. These data show that MgADP augments tension at low [Ca2+] and Ca2+-sensitivity of contraction, suggesting that MgADP destabilizes the quasi-helically ordered myosin OFF state, thereby shifting the cross-bridge population towards the disordered myosin ON state. Together, these results indicate that MgADP enhances the probability of cross-bridge binding to actin due to enhancement of both thick and thin filament-based activation mechanisms.


Assuntos
Actinas , Movimentos da Cabeça , Animais , Suínos , Difosfato de Adenosina/farmacologia , Difosfato de Adenosina/metabolismo , Actinas/metabolismo , Cálcio/química , Cinética , Miosinas/metabolismo , Contração Muscular , Trifosfato de Adenosina/metabolismo , Contração Miocárdica
5.
J Gen Physiol ; 154(12)2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36327149

RESUMO

Classically, striated muscle contraction is initiated by calcium (Ca2+)-dependent structural changes in regulatory proteins on actin-containing thin filaments, which allow the binding of myosin motors to generate force. Additionally, dynamic switching between resting off and active on myosin states has been shown to regulate muscle contractility, a recently validated mechanism by novel myosin-targeted therapeutics. The molecular nature of this switching, however, is not understood. Here, using a combination of small-angle x-ray fiber diffraction and biochemical assays with reconstituted systems, we show that cardiac thick filaments are directly Ca2+-regulated. We find that Ca2+ induces a structural transition of myosin heads from ordered off states close to the thick filament to disordered on states closer to the thin filaments. Biochemical assays show a Ca2+-induced transition from an inactive super-relaxed (SRX) state(s) to an active disordered-relaxed (DRX) state(s) in synthetic thick filaments. We show that these transitions are an intrinsic property of cardiac myosin only when assembled into thick filaments and provide a fresh perspective on nature's two orthogonal mechanisms to regulate muscle contraction through the thin and the thick filaments.


Assuntos
Cálcio , Miosinas Cardíacas , Cálcio/metabolismo , Miosinas Cardíacas/metabolismo , Citoesqueleto de Actina/metabolismo , Miosinas/metabolismo , Sarcômeros/metabolismo
6.
J Physiol ; 600(24): 5247-5266, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36342015

RESUMO

The contractile properties of fast-twitch and slow-twitch skeletal muscles are primarily determined by the myosin isoform content and modulated by a variety of sarcomere proteins. X-ray diffraction studies of regulatory mechanisms in muscle contraction have focused predominately on fast- or mixed-fibre muscle with slow muscle being much less studied. Here, we used time-resolved X-ray diffraction to investigate the dynamic behaviour of the myofilament proteins in relatively pure slow-twitch-fibre rat soleus (SOL) and pure fast-twitch-fibre rat extensor digitorum longus (EDL) muscle during twitch and tetanic contractions at optimal length. During twitch contractions the diffraction signatures indicating a transition in the myosin heads from ordered OFF states, where heads are held close to the thick filament backbone, to disordered ON states, where heads are free to bind to thin filaments, were found in EDL and not in SOL muscle. During tetanic contraction, changes in the disposition of myosin heads as active tension develops is a quasi-stepwise process in EDL muscle whereas in SOL muscle this relationship appears to be linear. The observed reduced extensibility of the thick filaments in SOL muscle as compared to EDL muscles indicates a molecular basis for this behaviour. These data indicate that for the EDL, thick filament activation is a cooperative strain-induced mechano-sensing mechanism, whereas for the SOL, thick filament activation has a more graded response. These different approaches to thick filament regulation in fast- and slow-twitch muscles may be adaptations for short-duration, strong contractions versus sustained, finely controlled contractions, respectively. KEY POINTS: Fast-twitch muscle and slow-twitch muscle are optimized for strong, short-duration contractions and for tonic postural activity, respectively. Structural events (OFF to ON transitions) in the myosin-containing thick filaments in fast muscle help determine the timing and strength of contractions, but these have not been studied in slow-twitch muscle. The X-ray diffraction signatures of structural OFF to ON transitions are different in fast extensor digitorum longus (EDL) and slow soleus (SOL) muscle, being completely absent during twitches in soleus muscle and blunted during tetanic contractions SOL as compared to EDL Quasi-stepwise thick filament structural OFF to ON transitions in fast twitch muscle may be an adaptation for rapid, ballistic movements, whereas more graded OFF to ON structural transitions in slow-twitch muscle may be an adaptation for slower, finer motions.


Assuntos
Contração Muscular , Sarcômeros , Ratos , Animais , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Miosinas , Adaptação Fisiológica , Fibras Musculares de Contração Lenta/fisiologia , Fibras Musculares de Contração Rápida/fisiologia
7.
Circ Res ; 130(6): 871-886, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35168370

RESUMO

BACKGROUND: Altered kinase localization is gaining appreciation as a mechanism of cardiovascular disease. Previous work suggests GSK-3ß (glycogen synthase kinase 3ß) localizes to and regulates contractile function of the myofilament. We aimed to discover GSK-3ß's in vivo role in regulating myofilament function, the mechanisms involved, and the translational relevance. METHODS: Inducible cardiomyocyte-specific GSK-3ß knockout mice and left ventricular myocardium from nonfailing and failing human hearts were studied. RESULTS: Skinned cardiomyocytes from knockout mice failed to exhibit calcium sensitization with stretch indicating a loss of length-dependent activation (LDA), the mechanism underlying the Frank-Starling Law. Titin acts as a length sensor for LDA, and knockout mice had decreased titin stiffness compared with control mice, explaining the lack of LDA. Knockout mice exhibited no changes in titin isoforms, titin phosphorylation, or other thin filament phosphorylation sites known to affect passive tension or LDA. Mass spectrometry identified several z-disc proteins as myofilament phospho-substrates of GSK-3ß. Agreeing with the localization of its targets, GSK-3ß that is phosphorylated at Y216 binds to the z-disc. We showed pY216 was necessary and sufficient for z-disc binding using adenoviruses for wild-type, Y216F, and Y216E GSK-3ß in neonatal rat ventricular cardiomyocytes. One of GSK-3ß's z-disc targets, abLIM-1 (actin-binding LIM protein 1), binds to the z-disc domains of titin that are important for maintaining passive tension. Genetic knockdown of abLIM-1 via siRNA in human engineered heart tissues resulted in enhancement of LDA, indicating abLIM-1 may act as a negative regulator that is modulated by GSK-3ß. Last, GSK-3ß myofilament localization was reduced in left ventricular myocardium from failing human hearts, which correlated with depressed LDA. CONCLUSIONS: We identified a novel mechanism by which GSK-3ß localizes to the myofilament to modulate LDA. Importantly, z-disc GSK-3ß levels were reduced in patients with heart failure, indicating z-disc localized GSK-3ß is a possible therapeutic target to restore the Frank-Starling mechanism in patients with heart failure.


Assuntos
Insuficiência Cardíaca , Miócitos Cardíacos , Animais , Conectina/genética , Conectina/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Humanos , Camundongos , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Fosforilação , Ratos
8.
Front Immunol ; 13: 1089064, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36685578

RESUMO

Background: Lung inflammation, neutrophil infiltration, and pulmonary vascular leakage are pathological hallmarks of acute respiratory distress syndrome (ARDS) which can lethally complicate respiratory viral infections. Despite similar comorbidities, however, infections in some patients may be asymptomatic while others develop ARDS as seen with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections for example. Methods: In this study, we infected resistant C57BL/6 and susceptible A/J strains of mice with pulmonary administration of murine hepatitis virus strain 1 (MHV-1) to determine mechanisms underlying susceptibility to pulmonary vascular leakage in a respiratory coronavirus infection model. Results: A/J animals displayed increased lung injury parameters, pulmonary neutrophil influx, and deficient recruitment of other leukocytes early in the infection. Moreover, under basal conditions, A/J neutrophils overexpressed primary granule protein genes for myeloperoxidase and multiple serine proteases. During infection, myeloperoxidase and elastase protein were released in the bronchoalveolar spaces at higher concentrations compared to C57BL/6 mice. In contrast, genes from other granule types were not differentially expressed between these 2 strains. We found that depletion of neutrophils led to mitigation of lung injury in infected A/J mice while having no effect in the C57BL/6 mice, demonstrating that an altered neutrophil phenotype and recruitment profile is a major driver of lung immunopathology in susceptible mice. Conclusions: These results suggest that host susceptibility to pulmonary coronaviral infections may be governed in part by underlying differences in neutrophil phenotypes, which can vary between mice strains, through mechanisms involving primary granule proteins as mediators of neutrophil-driven lung injury.


Assuntos
COVID-19 , Lesão Pulmonar , Vírus da Hepatite Murina , Pneumonia , Síndrome do Desconforto Respiratório , Camundongos , Animais , Neutrófilos , Peroxidase , Camundongos Endogâmicos C57BL , SARS-CoV-2 , Proteínas
10.
Biophys J ; 120(8): 1387-1395, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33705757

RESUMO

Impaired mucociliary clearance (MCC) is a key feature of many airway diseases, including asthma, bronchiectasis, chronic obstructive pulmonary disease, cystic fibrosis, and primary ciliary dyskinesia. To improve MCC and develop new treatments for these diseases requires a thorough understanding of how mucus concentration, mucus composition, and ciliary activity affect MCC, and how different therapeutics impact this process. Although differentiated cultures of human airway epithelial cells are useful for investigations of MCC, the extent of ciliary coordination in these cultures varies, and the mechanisms controlling ciliary orientation are not completely understood. By introducing a pattern of ridges and grooves into the underlying collagen substrate, we demonstrate for the first time, to our knowledge, that changes in the extracellular matrix can induce ciliary alignment. Remarkably, 90% of human airway epithelial cultures achieved continuous directional mucociliary transport (MCT) when grown on the patterned substrate. These cultures maintain transport for months, allowing carefully controlled investigations of MCC over a wide range of normal and pathological conditions. To characterize the system, we measured the transport of bovine submaxillary gland mucin (BSM) under several conditions. Transport of 5% BSM was significantly reduced compared with that of 2% BSM, and treatment of 5% BSM with the reducing agent tris(2-carboxyethyl)phosphine (TCEP) reduced viscosity and increased the rate of MCT by approximately twofold. Addition of a small amount of high-molecular-weight DNA increased mucus viscosity and reduced MCT by ∼75%, demonstrating that the composition of mucus, as well as the concentration, can have significant effects on MCT. Our results demonstrate that a simple patterning of the collagen substrate results in highly coordinated ciliated cultures that develop directional MCT, and can be used to investigate the mechanisms controlling the regulation of ciliary orientation. Furthermore, the results demonstrate that this method provides an improved system for studying the effects of mucus composition and therapeutic agents on MCC.


Assuntos
Fibrose Cística , Depuração Mucociliar , Animais , Bovinos , Células Epiteliais , Humanos , Muco
11.
J Physiol ; 598(22): 5165-5182, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32818298

RESUMO

KEY POINTS: Skeletal muscle relaxation has been primarily studied by assessing the kinetics of force decay. Little is known about the resultant dynamics of structural changes in myosin heads during relaxation. The naturally occurring nucleotide 2-deoxy-ATP (dATP) is a myosin activator that enhances cross-bridge binding and kinetics. X-ray diffraction data indicate that with elevated dATP, myosin heads were extended closer to actin in relaxed muscle and myosin heads return to an ordered, resting state after contraction more quickly. Molecular dynamics simulations of post-powerstroke myosin suggest that dATP induces structural changes in myosin heads that increase the surface area of the actin-binding regions promoting myosin interaction with actin, which could explain the observed delays in the onset of relaxation. This study of the dATP-induced changes in myosin may be instructive for determining the structural changes desired for other potential myosin-targeted molecular compounds to treat muscle diseases. ABSTRACT: Here we used time-resolved small-angle X-ray diffraction coupled with force measurements to study the structural changes in FVB mouse skeletal muscle sarcomeres during relaxation after tetanus contraction. To estimate the rate of myosin deactivation, we followed the rate of the intensity recovery of the first-order myosin layer line (MLL1) and restoration of the resting spacing of the third and sixth order of meridional reflection (SM3 and SM6 ) following tetanic contraction. A transgenic mouse model with elevated skeletal muscle 2-deoxy-ATP (dATP) was used to study how myosin activators may affect soleus muscle relaxation. X-ray diffraction evidence indicates that with elevated dATP, myosin heads were extended closer to actin in resting muscle. Following contraction, there is a slight but significant delay in the decay of force relative to WT muscle while the return of myosin heads to an ordered resting state was initially slower, then became more rapid than in WT muscle. Molecular dynamics simulations of post-powerstroke myosin suggest that dATP induces structural changes in myosin that increase the surface area of the actin-binding regions, promoting myosin interaction with actin. With dATP, myosin heads may remain in an activated state near the thin filaments following relaxation, accounting for the delay in force decay and the initial delay in recovery of resting head configuration, and this could facilitate subsequent contractions.


Assuntos
Nucleotídeos de Desoxiadenina , Miosinas , Animais , Camundongos , Contração Muscular , Relaxamento Muscular , Músculo Esquelético , Sarcômeros
12.
Int J Mol Sci ; 21(15)2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32752103

RESUMO

The flight muscle of Manduca sexta (DLM1) is an emerging model system for biophysical studies of muscle contraction. Unlike the well-studied indirect flight muscle of Lethocerus and Drosophila, the DLM1 of Manduca is a synchronous muscle, as are the vertebrate cardiac and skeletal muscles. Very little has been published regarding the ultrastructure and protein composition of this muscle. Previous studies have demonstrated that DLM1 express two projectin isoform, two kettin isoforms, and two large Salimus (Sls) isoforms. Such large Sls isoforms have not been observed in the asynchronous flight muscles of Lethocerus and Drosophila. The spatial localization of these proteins was unknown. Here, immuno-localization was used to show that the N-termini of projectin and Salimus are inserted into the Z-band. Projectin spans across the I-band, and the C-terminus is attached to the thick filament in the A-band. The C-terminus of Sls was also located in the A-band. Using confocal microscopy and experimental force-length curves, thin filament lengths were estimated as ~1.5 µm and thick filament lengths were measured as ~2.5 µm. This structural information may help provide an interpretive framework for future studies using this muscle system.


Assuntos
Conectina/genética , Manduca/fisiologia , Contração Muscular/fisiologia , Proteínas Musculares/genética , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/ultraestrutura , Sequência de Aminoácidos/genética , Animais , Fenômenos Biofísicos/genética , Drosophila/genética , Voo Animal/fisiologia , Manduca/genética , Contração Muscular/genética , Músculo Esquelético/fisiologia , Músculo Esquelético/ultraestrutura , Miofibrilas/genética , Miofibrilas/fisiologia , Miofibrilas/ultraestrutura , Sarcômeros/genética , Sarcômeros/fisiologia , Sarcômeros/ultraestrutura
13.
Mol Cancer Ther ; 18(9): 1565-1576, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31270152

RESUMO

Amplification of the epidermal growth factor receptor gene (EGFR) represents one of the most commonly observed genetic lesions in glioblastoma (GBM); however, therapies targeting this signaling pathway have failed clinically. Here, using human tumors, primary patient-derived xenografts (PDX), and a murine model for GBM, we demonstrate that EGFR inhibition leads to increased invasion of tumor cells. Further, EGFR inhibitor-treated GBM demonstrates altered oxidative stress, with increased lipid peroxidation, and generation of toxic lipid peroxidation products. A tumor cell subpopulation with elevated aldehyde dehydrogenase (ALDH) levels was determined to comprise a significant proportion of the invasive cells observed in EGFR inhibitor-treated GBM. Our analysis of the ALDH1A1 protein in newly diagnosed GBM revealed detectable ALDH1A1 expression in 69% (35/51) of the cases, but in relatively low percentages of tumor cells. Analysis of paired human GBM before and after EGFR inhibitor therapy showed an increase in ALDH1A1 expression in EGFR-amplified tumors (P < 0.05, n = 13 tumor pairs), and in murine GBM ALDH1A1-high clones were more resistant to EGFR inhibition than ALDH1A1-low clones. Our data identify ALDH levels as a biomarker of GBM cells with high invasive potential, altered oxidative stress, and resistance to EGFR inhibition, and reveal a therapeutic target whose inhibition should limit GBM invasion.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Família Aldeído Desidrogenase 1/metabolismo , Animais , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Dasatinibe/farmacologia , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Cloridrato de Erlotinib/farmacologia , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Retinal Desidrogenase/metabolismo
14.
Brain Pathol ; 29(1): 85-96, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30051528

RESUMO

Pleomorphic xanthoastrocytoma (PXA) is an astrocytic neoplasm that is typically well circumscribed and can have a relatively favorable prognosis. Tumor progression to anaplastic PXA (WHO grade III), however, is associated with a more aggressive biologic behavior and worse prognosis. The factors that drive anaplastic progression are largely unknown. We performed comprehensive genomic profiling on a set of 23 PXAs from 19 patients, including 15 with anaplastic PXA. Four patients had tumor tissue from multiple recurrences, including two with anaplastic progression. We find that PXAs are genetically defined by the combination of CDKN2A biallelic inactivation and RAF alterations that were present in all 19 cases, most commonly as CDKN2A homozygous deletion and BRAF p.V600E mutation but also occasionally BRAF or RAF1 fusions or other rearrangements. The third most commonly altered gene in anaplastic PXA was TERT, with 47% (7/15) harboring TERT alterations, either gene amplification (n = 2) or promoter hotspot mutation (n = 5). In tumor pairs analyzed before and after anaplastic progression, two had increased copy number alterations and one had TERT promoter mutation at recurrence. Less commonly altered genes included TP53, BCOR, BCORL1, ARID1A, ATRX, PTEN, and BCL6. All PXA in this cohort were IDH and histone H3 wildtype, and did not contain alterations in EGFR. Genetic profiling performed on six regions from the same tumor identified intratumoral genomic heterogeneity, likely reflecting clonal evolution during tumor progression. Overall, anaplastic PXA is characterized by the combination of CDKN2A biallelic inactivation and oncogenic RAF kinase signaling as well as a relatively small number of additional genetic alterations, with the most common being TERT amplification or promoter mutation. These data define a distinct molecular profile for PXA and suggest additional genetic alterations, including TERT, may be associated with anaplastic progression.


Assuntos
Astrocitoma/genética , Astrocitoma/patologia , Adolescente , Adulto , Idoso , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Criança , Inibidor p16 de Quinase Dependente de Ciclina/genética , Variações do Número de Cópias de DNA , Feminino , Perfilação da Expressão Gênica/métodos , Homozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Proteínas Proto-Oncogênicas B-raf/genética , Telomerase/genética , Transcriptoma/genética
15.
Int J Mol Sci ; 19(9)2018 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-30200618

RESUMO

Transgenic mouse models have been important tools for studying the relationship of genotype to phenotype for human diseases, including those of skeletal muscle. We show that mouse skeletal muscle can produce high quality X-ray diffraction patterns establishing the mouse intact skeletal muscle X-ray preparation as a potentially powerful tool to test structural hypotheses in health and disease. A notable feature of the mouse model system is the presence of residual myosin layer line intensities in contracting mouse muscle patterns. This provides an additional tool, along with the I1,1/I1,0 intensity ratio, for estimating the proportions of active versus relaxed myosin heads under a given set of conditions that can be used to characterize a given physiological condition or mutant muscle type. We also show that analysis of the myosin layer line intensity distribution, including derivation of the myosin head radius, Rm, may be used to study the role of the super-relaxed state in myosin regulation. When the myosin inhibitor blebbistatin is used to inhibit force production, there is a shift towards a highly quasi-helically ordered configuration that is distinct from the normal resting state, indicating there are more than one helically ordered configuration for resting crossbridges.


Assuntos
Contração Muscular , Músculo Esquelético/fisiologia , Miosinas/química , Descanso/psicologia , Animais , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Camundongos , Camundongos Transgênicos , Modelos Moleculares , Contração Muscular/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Mutação , Estrutura Secundária de Proteína , Difração de Raios X
16.
Biophys J ; 115(8): 1580-1588, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30266320

RESUMO

Myofilament extensibility is a key structural parameter for interpreting myosin cross-bridge kinetics in striated muscle. Previous studies reported much higher thick-filament extensibility at low tension than the better-known and commonly used values at high tension, but in interpreting mechanical studies of muscle, a single value for thick-filament extensibility has usually been assumed. Here, we established the complete thick-filament force-extension curve from actively contracting, intact vertebrate skeletal muscle. To access a wide range of tetanic forces, the myosin inhibitor blebbistatin was used to induce low tetanic forces in addition to the higher tensions obtained from tetanic contractions of the untreated muscle. We show that the force/extensibility curve of the thick filament is nonlinear, so assuming a single value for thick-filament extensibility at all force levels is not justified. We also show that independent of whether tension is generated passively by sarcomere stretch or actively by cross-bridges, the thick-filament extensibility is nonlinear. Myosin head periodicity, however, only changes when active tension is generated under calcium-activated conditions. The nonlinear thick-filament force-extension curve in skeletal muscle, therefore, reflects a purely passive response to either titin-based force or actomyosin-based force, and it does not include a thick-filament activation mechanism. In contrast, the transition of myosin head periodicity to an active configuration appears to only occur in response to increased active force when calcium is present.


Assuntos
Conectina/análise , Contração Muscular , Músculo Esquelético/fisiologia , Miosinas/metabolismo , Animais , Elasticidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/citologia
17.
Neuromolecular Med ; 19(2-3): 322-344, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28620826

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder characterized by alpha-synuclein accumulation and loss of dopaminergic neurons in the substantia nigra (SN) region of the brain. Increased levels of alpha-synuclein have been shown to result in loss of mitochondrial electron transport chain complex I activity leading to increased reactive oxygen species (ROS) production. WT alpha-synuclein was stably overexpressed in human BE(2)-M17 neuroblastoma cells resulting in increased levels of an alpha-synuclein multimer, but no increase in alpha-synuclein monomer levels. Oxygen consumption was decreased by alpha-synuclein overexpression, but ATP levels did not decrease and ROS levels did not increase. Treatment with ferrous sulfate, a ROS generator, resulted in decreased oxygen consumption in both control and alpha-synuclein overexpressing cells. However, this treatment only decreased ATP levels and increased ROS production in the cells overexpressing alpha-synuclein. Similarly, paraquat, another ROS generator, decreased ATP levels in the alpha-synuclein overexpressing cells, but not in the control cells, further demonstrating how alpha-synuclein sensitized the cells to oxidative insult. Proteomic analysis yielded molecular insights into the cellular adaptations to alpha-synuclein overexpression, such as the increased abundance of many mitochondrial proteins. Many amino acids and citric acid cycle intermediates and their ester forms were individually supplemented to the cells with L-serine, L-proline, L-aspartate, or L-glutamine decreasing ROS production in oxidatively stressed alpha-synuclein overexpressing cells, while diethyl oxaloacetate or L-valine supplementation increased ATP levels. These results suggest that dietary supplementation with individual metabolites could yield bioenergetic improvements in PD patients to delay loss of dopaminergic neurons.


Assuntos
Aminoácidos/farmacologia , Metabolismo Energético/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , alfa-Sinucleína/metabolismo , Trifosfato de Adenosina/metabolismo , Linhagem Celular Tumoral , Meios de Cultura/farmacologia , Avaliação Pré-Clínica de Medicamentos , Compostos Ferrosos/farmacologia , Humanos , Mitocôndrias/metabolismo , Neuroblastoma/patologia , Neurônios/metabolismo , Estresse Oxidativo , Consumo de Oxigênio/efeitos dos fármacos , Paraquat/farmacologia , Proteínas Recombinantes/metabolismo , alfa-Sinucleína/genética
18.
Oncotarget ; 7(48): 79101-79116, 2016 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-27738329

RESUMO

Abnormal activation of the epidermal growth factor receptor (EGFR) due to a deletion of exons 2-7 of EGFR (EGFRvIII) is a common alteration in glioblastoma (GBM). While this alteration can drive gliomagenesis, tumors harboring EGFRvIII are heterogeneous. To investigate the role for EGFRvIII activation in tumor phenotype we used a neural progenitor cell-based murine model of GBM driven by EGFR signaling and generated tumor progenitor cells with high and low EGFRvIII activation, pEGFRHi and pEGFRLo. In vivo, ex vivo, and in vitro studies suggested a direct association between EGFRvIII activity and increased tumor cell proliferation, decreased tumor cell adhesion to the extracellular matrix, and altered progenitor cell phenotype. Time-lapse confocal imaging of tumor cells in brain slice cultures demonstrated blood vessel co-option by tumor cells and highlighted differences in invasive pattern. Inhibition of EGFR signaling in pEGFRHi promoted cell differentiation and increased cell-matrix adhesion. Conversely, increased EGFRvIII activation in pEGFRLo reduced cell-matrix adhesion. Our study using a murine model for GBM driven by a single genetic driver, suggests differences in EGFR activation contribute to tumor heterogeneity and aggressiveness.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Receptores ErbB/genética , Receptores ErbB/metabolismo , Glioblastoma/diagnóstico por imagem , Deleção de Sequência , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Ativação Enzimática , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Camundongos , Microscopia Confocal , Transplante de Neoplasias , Fosforilação , Imagem com Lapso de Tempo
20.
Mol Pharm ; 13(3): 1185-90, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26751497

RESUMO

Liposomal doxorubicin is a clinically important drug formulation indicated for the treatment of several different forms of cancer. For doxorubicin to exert a therapeutic effect, it must gain access to the nucleus. However, a large proportion of the liposomal doxorubicin dose fails to work because it is sequestered within endolysosomal organelles following endocytosis of the liposomes due to the phenomenon of ion trapping. Listeriolysin O (LLO) is a pore-forming protein that can provide a mechanism for endosomal escape. The present study demonstrates that liposomal coencapsulation of doxorubicin with LLO enables a significantly larger percentage of the dose to colocalize with the nucleus compared to liposomes containing doxorubicin alone. The change in intracellular distribution resulted in a significantly more potent formulation of liposomal doxorubicin as demonstrated in both the ovarian carcinoma cell line A2780 and its doxorubicin-resistant derivative A2780ADR.


Assuntos
Toxinas Bacterianas/farmacologia , Proliferação de Células/efeitos dos fármacos , Doxorrubicina/análogos & derivados , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proteínas de Choque Térmico/farmacologia , Proteínas Hemolisinas/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , Toxinas Bacterianas/química , Doxorrubicina/química , Doxorrubicina/farmacologia , Quimioterapia Combinada , Feminino , Proteínas de Choque Térmico/química , Proteínas Hemolisinas/química , Humanos , Microscopia Confocal , Microscopia de Fluorescência , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Frações Subcelulares , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA