Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 10(19): e2301230, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37078808

RESUMO

Excessive activation of Toll-like receptor (TLR) signaling pathways and the circulating endotoxin are key players in the pathogenesis of many acute and chronic inflammatory diseases. Regulation of TLR-mediated inflammatory responses by bioactive nanodevices represents a promising strategy for treating these diseases. In searching for novel, clinically applicable nanodevices with potent TLR inhibitory activities, three types of hexapeptide-modified nano-hybrids with different cores of phospholipid nanomicelles, liposomes, and poly(lactic-co-glycolic acid) nanoparticles are constructed. Interestingly, only the peptide-modified lipid-core nanomicelles (M-P12) display potent TLR inhibitory activities. Further mechanistic studies disclose that lipid-core nanomicelles have a generic property to bind to and scavenge lipophilic TLR ligands including lipopolysaccharide to block the ligand-receptor interaction and down-regulate the TLR signaling extracellularly. In addition, the peptide modification enables M-P12 a unique capability to modulate endosomal acidification upon being endocytosed into macrophages, which subsequently regulates the endosomal TLR signal transduction. In an acute lung injury mouse model, intratracheal administration of M-P12 can effectively target lung macrophages and reduce lung inflammation and injuries. This work defines a dual mechanism of action of the peptide-modified lipid-core nanomicelles in regulating TLR signaling, and provides new strategies for the development of therapeutic nanodevices for treating inflammatory diseases.


Assuntos
Endotoxinas , Receptores Toll-Like , Animais , Camundongos , Receptores Toll-Like/metabolismo , Lipopolissacarídeos/farmacologia , Peptídeos/química , Concentração de Íons de Hidrogênio
2.
J Nanobiotechnology ; 20(1): 456, 2022 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-36274120

RESUMO

MicroRNAs (miRNAs) are small non-coding RNAs with ~ 22 nucleotides, playing important roles in the post-transcriptional regulation of gene expression. The expression profiles of many miRNAs are closely related to the occurrence and progression of cancer and can be used as biomarkers for cancer diagnosis and prognosis. However, their intrinsic properties, such as short length, low abundance and high sequence homology, represent great challenges in miRNA detection of clinical samples. To overcome these challenges, we developed a simple, ultrasensitive detection platform of electrochemical miRNAs chip (e-miRchip) with a novel signal amplification strategy using silver nanoparticle reporters (AgNRs) for multiplexed, direct, electronic profiling of miRNAs. A two-step hybridization strategy was used to detect miRNAs, where the target miRNA hybridizes with a stem-loop probe to unlock the probe first, and the opened stem-loop can further hybridize with AgNRs for signaling amplification. To enhance the detection sensitivity, the gold nanoflower electrodes (GNEs) were constructed in the microaperture arrays of the e-miRchips by electroplating. With the optimal size of the GNEs, the e-miRchip showed excellent performance for miR-21 detection with a detection limit of 0.56 fM and a linear range extended from 1 fM to 10 pM. The e-miRchip also exhibited good specificity in differentiating the 3-base mismatched sequences of the target miRNA. In addition, the e-miRchip was able to directly detect miR-21 expression in the total RNA extracts or cell lysates collected from lung cancer cells and normal cells. This work demonstrated the developed e-miRchip as an efficient and promising miniaturized point-of-care diagnostic device for the early diagnosis and prognosis of cancers.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , MicroRNAs , Prata , MicroRNAs/genética , MicroRNAs/química , Nanopartículas Metálicas/química , Limite de Detecção , Microeletrodos , Ouro/química , Nucleotídeos
3.
Front Immunol ; 12: 750128, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34659253

RESUMO

Macrophages play an important role in the initiation, progression and resolution of inflammation in many human diseases. Effective regulation of their activation and immune responses could be a promising therapeutic strategy to manage various inflammatory conditions. Nanodevices that naturally target macrophages are ideal agents to regulate immune responses of macrophages. Here we described a special tryptophan (Trp)-containing hexapeptide-coated gold nanoparticle hybrid, PW, which had unique immunomodulatory activities on macrophages. The Trp residues enabled PW higher affinity to cell membranes, and contributed to inducing mild pro-inflammatory responses of NF-κB/AP-1 activation. However, in the presence of TLR stimuli, PW exhibited potent anti-inflammatory activities through inhibiting multiple TLR signaling pathways. Mechanistically, PW was internalized primarily through micropinocytosis pathway into macrophages and attenuated the endosomal acidification process, and hence preferentially affected the endosomal TLR signaling. Interestingly, PW could induce the expression of the TLR negative regulator IRAK-M, which may also contribute to the observed TLR inhibitory activities. In two acute lung injury (ALI) mouse models, PW could effectively ameliorate lung inflammation and protect lung from injuries. This work demonstrated that nanodevices with thoughtful design could serve as novel immunomodulatory agents to manage the dysregulated inflammatory responses for treating many chronic and acute inflammatory conditions, such as ALI.


Assuntos
Lesão Pulmonar Aguda/prevenção & controle , Ouro/administração & dosagem , Fatores Imunológicos/administração & dosagem , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Nanopartículas Metálicas/administração & dosagem , Peptídeos/administração & dosagem , Triptofano/administração & dosagem , Lesão Pulmonar Aguda/patologia , Animais , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Sobrevivência Celular/efeitos dos fármacos , Citocinas/imunologia , Humanos , Interleucina-10/imunologia , Lipopolissacarídeos , Lipossomos , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/patologia , Macrófagos/imunologia , Masculino , Camundongos Endogâmicos C57BL , Células THP-1 , Transcriptoma/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA