Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(8)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38674009

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection continues to raise concerns worldwide. Numerous host factors involved in SARS-CoV-2 infection have been identified, but the regulatory mechanisms of these host factor remain unclear. Here, we report the role of G-quadruplexes (G4s) located in the host factor promoter region in SARS-CoV-2 infection. Using bioinformatics, biochemical, and biological assays, we provide evidence for the presence of G4 structures in the promoter regions of SARS-CoV-2 host factors NRP1. Specifically, we focus on two representative G4s in the NRP1 promoter and highlight its importance in SARS-CoV-2 pathogenesis. The presence of the G4 structure greatly increases NRP1 expression, facilitating SARS-CoV-2 entry into cells. Utilizing published single-cell RNA sequencing data obtained from simulated SARS-CoV-2 infection in human bronchial epithelial cells (HBECs), we found that ciliated cells with high levels of NRP1 are prominently targeted by the virus during infection. Furthermore, our study identifies E2F1 act as a transcription factor that binds to G4s. These findings uncover a previously unknown mechanism underlying SARS-CoV-2 infection and suggest that targeting G4 structures could be a potential strategy for COVID-19 prevention and treatment.


Assuntos
COVID-19 , Quadruplex G , Neuropilina-1 , Regiões Promotoras Genéticas , Humanos , COVID-19/genética , COVID-19/virologia , Fator de Transcrição E2F1/metabolismo , Fator de Transcrição E2F1/genética , Células Epiteliais/virologia , Células Epiteliais/metabolismo , Neuropilina-1/genética , Neuropilina-1/metabolismo , SARS-CoV-2/fisiologia , Internalização do Vírus
3.
Oncol Lett ; 22(1): 557, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34084224

RESUMO

Long non-coding RNAs (lncRNAs) serve an important role in the progression of cancer. LINC00659 was recently identified as a novel oncogenic lncRNA involved in colon cancer cell proliferation via modulating the cell cycle. However, the function of LINC00659 in other types of cancer, especially in gastric cancer (GC), remains unknown. In the present study, bioinformatics analysis combined with cell experiments were performed to explore the function of LINC00659 in GC. It was revealed that LINC00659 expression was significantly upregulated in GC tissues and cell lines. Increased levels of LINC00659 were associated with advanced tumor stage and unfavorable prognosis of patients with GC. Additionally, upregulated LINC00659 expression promoted the migration and invasion of GC cells. Further analysis using a bioinformatics method revealed that matrix metalloproteinase 15 and IQ motif-containing GTPase activating protein 3 were potential downstream targets of LINC00659 involved in tumor metastasis, although the precise underlying mechanism requires further exploration.

4.
Mol Ther ; 29(8): 2601-2616, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-33839325

RESUMO

Hepatocellular carcinoma (HCC) is among the most common malignancies and has an unfavorable prognosis. The hepatitis B virus-encoded X (HBx) protein is closely associated with hepatocarcinogenesis. Sorafenib is a unique targeted oral kinase inhibitor for advanced HCC. Long noncoding RNAs (lncRNAs) mediate HCC progression and therapeutic resistance by acting as competing endogenous RNAs (ceRNAs). However, the ceRNA regulatory mechanisms underlying sorafenib resistance in HBx-associated HCC remain largely unknown. In this study, we found that translation regulatory lncRNA 1 (TRERNA1) upregulation by HBx not only promoted HCC cell proliferation by regulating the cell cycle in vitro and in vivo but also correlated positively with poor prognosis in HCC. Importantly, TRERNA1 enhanced sorafenib resistance in HCC cells. RNA sequencing (RNA-seq) analysis indicated that NRAS proto-oncogene (NRAS) is a potential target of TRERNA1 that mediates aspects of hepatocellular carcinogenesis. TRERNA1 acts as a ceRNA to regulate NRAS expression by sponging microRNA (miR)-22-3p. In summary, we show that increased TRERNA1 expression induced by HBx reduces HCC cell sensitivity to sorafenib by activating the RAS/Raf/MEK/ERK signaling pathway. We reveal a novel regulatory mode by which the TRERNA1/miR-22-3p/NRAS axis mediates HCC progression and indicates that TRERNA1 might constitute a powerful tumor biomarker and therapeutic target in HCC.


Assuntos
Carcinoma Hepatocelular/patologia , Resistencia a Medicamentos Antineoplásicos , GTP Fosfo-Hidrolases/genética , Neoplasias Hepáticas/patologia , Proteínas de Membrana/genética , MicroRNAs/genética , RNA Longo não Codificante/genética , Transativadores/metabolismo , Proteínas Virais Reguladoras e Acessórias/metabolismo , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Camundongos , Prognóstico , Análise de Sequência de RNA , Sorafenibe/farmacologia , Regulação para Cima
5.
Exp Ther Med ; 17(5): 4046-4054, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31007741

RESUMO

Resistance to chemotherapeutic drugs leads to a poor prognosis in gastric cancer (GC). The present study aimed to assess the association between pituitary homeobox paired homeodomain transcription 1 (PITX1) expression and the sensitivity of GC cells to the chemotherapeutic drugs 5-fluorouracil (5-FU) and cisplatin (CDDP). In the present study, the gastric cancer cell lines GES-1, AGS, BGC-823, MCG-803 and SGC-7901 were used. The expression of PITX1 was determined via reverse transcription-quantitative polymerase chain reaction in GC cell lines. AGS and BGC-823 cells, which exhibit a decreased PITX1 expression, were transfected with a PITX1 cDNA construct and its control vector. MCG-803 and SGC-7901 cells, which exhibit an increased PITX1 expression, were transfected with siRNA against PITX1 and its control scramble sequence. A Cell Counting kit-8 assay was performed to determine the impact of PITX1 expression on the sensitivity of GC cells to 5-FU and CDDP. The Cancer Genome Atlas database was used to analyze the expression of PITX1 with GC prognosis in the Asian population and to assess the potential mechanism of PITX1 in 5-FU and CDDP resistance. The results revealed that the overexpression of PIXT1 increased the sensitivity of GC cells to 5-FU/CDDP. The combination of 5-FU/CDDP and PITX1 overexpression also reduced the proliferation of GC cells. Additionally, PIXT1 knockdown decreased the sensitivity of GC cells to 5-FU/CDDP. TCGA data revealed that a lower expression of PITX1 is exhibited in Asian GC patients than in normal individuals. GC patients with a lower expression of PITX1 had a poor prognosis. The expression of PITX1 affected the sensitivity of GC cells to 5-FU/CDDP, indicating that PITX1 may increase the efficacy of treatment in GC patients.

6.
Cell Death Dis ; 9(12): 1158, 2018 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-30464170

RESUMO

Increasing studies showed that long-noncoding RNAs (lncRNAs) play important roles in the biological processes, including cancer initiation and progression. However, little is known about the exact role and regulation mechanism of lncRNA UCA1 during the progression of gastric cancer (GC). In this study, we found that UCA1 was aberrantly elevated in gastric cancer tissues, and was significantly associated with lymph node metastasis and TNM stage. In vivo and in vitro, enforced UCA1 level promoted cell migration and invasion of GC cell. Depleted UCA1 expression level attenuated the ability of cell migration and invasion in GC. And then, we detected that expression level of ZEB2, a transcription factor related to tumor metastasis, was regulated by UCA1 in GC cells. miR-203 targets and suppresses to ZEB2 expression. Furthermore, we found that UCA1 could directly interact with miR-203 and lead to the release of miR-203-targeted transcripts ZEB2. Herein, we revealed the novel mechanism of UCA1 on regulating metastasis-related gene by sponge regulatory axis during GC metastasis. Our findings indicated that UCA1 plays a critical role in metastatic GC by mediating sponge regulatory axis miR-203/ZEB2. To explore function of UCA1-miR-203-ZEB2 axis may provide an informative biomarker of malignancy and a highly selective anti-GC therapeutic target.


Assuntos
MicroRNAs/genética , RNA Longo não Codificante/genética , Neoplasias Gástricas/genética , Homeobox 2 de Ligação a E-box com Dedos de Zinco/genética , Idoso , Animais , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Transição Epitelial-Mesenquimal/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Metástase Neoplásica , Neoplasias Gástricas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Oncogene ; 37(32): 4358-4371, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29717263

RESUMO

DNA methyltransferase 3A (DNMT3A) has been recognised as a key element of epigenetic regulation in normal development, and the aberrant regulation of DNMT3A is implicated in multiple types of cancers, especially haematological malignancies. However, its clinical significance and detailed functional role in solid tumours remain unknown, although abnormal expression has gained widespread attention in these cancers. Here, we show that DNMT3A isoform b (DNMT3Ab), a member of the DNMT3A isoform family, is critical for directing epithelial-mesenchymal transition (EMT)-associated metastasis in gastric cancer (GC). DNMT3Ab is positively linked to tumour-node-metastasis (TNM) stage, lymph node metastasis and poor prognosis in GC patients. Overexpression of DNMT3Ab promotes GC cell migration and invasion as well as EMT through repression of E-cadherin. Meanwhile, DNMT3Ab promotes lung metastasis of GC in vivo. Mechanistic studies indicate that DNMT3Ab mediates the epigenetic inaction of the E-cadherin gene via DNA hypermethylation and histone modifications of H3K9me2 and H3K27me3. Depletion of DNMT3Ab effectively restores the expression of E-cadherin and reverses TGF-ß-induced EMT by reducing DNA methylation, H3K9me2 and H3K27me3 levels at the E-cadherin promoter. Importantly, DNMT3Ab cooperated with H3K9me2 and H3K27me3 contributes to the transcriptional regulation of E-cadherin in a Snail-dependent manner. Further, gene expression profiling analysis indicates that multiple metastasis-associated genes and oncogenic signalling pathways are regulated in response to DNMT3Ab overexpression. These results identify DNMT3Ab as a crucial regulator of metastasis-related genes in GC. Targeting the DNMT3Ab/Snail/E-cadherin axis may provide a promising therapeutic strategy in the treatment of metastatic GC with high DNMT3Ab expression.


Assuntos
Caderinas/genética , DNA (Citosina-5-)-Metiltransferases/genética , Metilação de DNA/genética , Transição Epitelial-Mesenquimal/genética , Isoformas de Proteínas/genética , Neoplasias Gástricas/genética , Movimento Celular/genética , DNA Metiltransferase 3A , Epigênese Genética/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Histonas/genética , Humanos , Metástase Linfática/genética , Masculino , Pessoa de Meia-Idade , Regiões Promotoras Genéticas/genética , Transdução de Sinais/genética , Fatores de Transcrição da Família Snail/genética , Neoplasias Gástricas/patologia , Transcrição Gênica/genética , Fator de Crescimento Transformador beta/genética
8.
Cell Physiol Biochem ; 46(6): 2215-2231, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29734189

RESUMO

BACKGROUND/AIMS: PITX1 has been identified as a potential tumor-suppressor gene in several malignant tumors. The molecular mechanism underlying PITX1, particularly its function as a transcription factor regulating gene expression during tumorigenesis, is still poorly understood. METHODS: The expression level and location of PITX1 were determined by quantitative reverse transcription PCR (qRT-PCR) and immunohistochemical staining in gastric cancer (GC). The effect of PITX1 on the GC cell proliferation and tumorigenesis was analyzed in vitro and in vivo. To explore how PITX1 suppresses cell proliferation, we used PITX1-ChIP-sequencing to measure genome-wide binding sites of PITX1 and assessed global function associations based on its putative target genes. ChIP-PCR, electrophoretic mobility shift assay, and promoter reporter assays examined whether PITX1 bound to PDCD5 and regulated its expression. The function of PDCD5 in GC cell apoptosis was further examined in vitro and in vivo. The relationship between the PITX1 protein level and GC patient prognosis was evaluated by the Kaplan-Meier estimator. Meanwhile, the expression level of miR-19a-3p, which is related to PITX1, was also detected by luciferase reporter assay, qRT-PCR, and western blotting. RESULTS: The expression level of PITX1 was decreased in GC tissues and cell lines. Elevated PITX1 expression significantly suppressed the cell proliferation of GC cells and tumorigenesis in vitro and in vivo. PITX1 knockdown blocked its inhibition of GC cell proliferation. PITX1 bound to whole genome-wide sites, with these targets enriched on genes with functions mainly related to cell growth and apoptosis. PITX1 bound to PDCD5, an apoptosis-related gene, during tumorigenesis, and cis-regulated PDCD5 expression. Increased PDCD5 expression in GC cells not only induced GC cell apoptosis, but also suppressed GC cell growth in vitro and in vivo. Moreover, PITX1 expression was regulated by miR-19a-3p. More importantly, a decreased level of PITX1 protein was correlated with poor GC patient prognosis. CONCLUSION: Decreased expression of PITX1 predicts shorter overall survival in GC patients. As a transcriptional activator, PITX1 regulates apoptosis-related genes, including PDCD5, during gastric carcinogenesis. These data indicate PDCD5 to be a novel and feasible therapeutic target for GC.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Proteínas de Neoplasias/genética , Fatores de Transcrição Box Pareados/genética , Neoplasias Gástricas/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Mucosa Gástrica/metabolismo , Humanos , Masculino , Camundongos Nus , Pessoa de Meia-Idade , Prognóstico , Estômago/patologia , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/patologia , Ativação Transcricional
9.
Oncol Rep ; 40(2): 923-931, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29845218

RESUMO

Cancer cell invasion and metastasis are the leading causes of the high mortality rates in patients with malignant tumors. There is accumulating evidence to indicate that dysregulated long non­coding RNAs (lncRNAs) may be involved in the progression of tumor invasion and metastasis. However, the regulatory mechanisms of the aberrant expression of lncRNAs remain largely unknown, although the roles of lncRNAs as drivers of tumor suppressive and oncogenic functions have appeared in prevalent cancer types in recent years. In the present study, we identified that the transcription factor, activating enhancer­binding protein 4 (TFAP4), acts as a key modulator of translation regulatory long non­coding RNA 1(TRERNA1), which has been proven to promote the invasion and metastasis of gastric cancer (GC) cells. We revealed that TRERNA1 was upregulated in gastric carcinogenesis and promoted cell migration and invasion in GC. Using bioinformatics analysis, we observed that there were several potential binding sites of TFAP4 in the promoter region of TRERNA1. The knockdown of TFAP4 significantly reduced the expression level of TRERNA1, whereas the ectopic expression of TFAP4 significantly increased the expression level of TRERNA1 in GC cell lines. Dual luciferase reporter assay combined with chromatin immunoprecipitation (ChIP) revealed that TFAP4 specifically regulated the transcriptional activity of TRERNA1 by binding to the E­box motifs in the TRERNA1 promoter. In addition, there was a positive correlation between the TFAP4 and TRERNA1 expression level in clinical GC cases, which also indicated that TFAP4 can directly modulate the expression of TRERNA1. In the present study, we provide a novel potential therapeutic target and strategy for GC.


Assuntos
Fator 4 Ativador da Transcrição/genética , Movimento Celular/genética , Invasividade Neoplásica/genética , RNA Longo não Codificante/genética , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Linhagem Celular Tumoral , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica/patologia , Regiões Promotoras Genéticas/genética , Estômago/patologia , Regulação para Cima/genética
10.
Mol Ther Nucleic Acids ; 8: 291-299, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28918030

RESUMO

Long noncoding RNA (lncRNA) has been implicated in cancer, but little is known about the role of lncRNAs as regulators of tumor metastasis. In the present study, we demonstrate that lncRNA TRERNA1 acts like an enhancer of SNAI1 to promote cell invasion and migration and to contribute to metastasis of gastric cancer (GC). TRERNA1 is significantly unregulated in GCs and GC cell lines. Increased TRERNA1 is positively correlated with lymph node metastasis of GCs. RNA immunoprecipitation (RIP) and chromatin immunoprecipitation (ChIP) assays revealed that TRERNA1 functions as a scaffold to recruit EZH2 to epigenetically silence epithelial-mesenchymal transition marker CDH1 by H3K27me3 of its promoter region. TRERNA1 knockdown markedly reduced GC cell migration, invasion, tumorigenicity, and metastasis. Depletion of TRERNA1 reduced cell metastasis of GCs in vivo. Taken together, our findings indicated that TRERNA1 serves as a critical effector in GC progression by regulating CDH1 at the transcription level. It is implied that TRERNA1/CDH1 is a new potential target for GC therapy.

11.
Oncol Rep ; 37(5): 2811-2818, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28339081

RESUMO

Hepatitis B virus (HBV) is mainly suspected to promote hepatocellular carcinoma (HCC) development by epigenetic alteration. The HBV X protein (HBx) plays a key role in the molecular pathogenesis of HBV-related HCC. However, the mechanism of HBx-mediated hepatocarcinogenesis remains to be elucidated. RIZ1 gene, a candidate HCC suppressor gene, is frequently found to be hypermethylated and downregulated in HCC. In the present study, we show that the expression of RIZ1 was downregulated in 65% HCC tissues. Decreased expression of RIZ1 was restored by 5'-Aza in MHCC-97H HCC cell lines. HBx recombinant transfection increased DNMT1 expression level and suppressed RIZ1 expression. Moreover, knockdown of DNMT1 by siRNA restored RIZ1 expression in HCC cell SMMC-7721 and reduced methylated CpG sites of RIZ1. ChIP results showed that DNMT1 protein could bind to RIZ1 promoter, and this interaction was further enhanced with the transfected HBX recombinant. Moreover, miR-152 was decreased and involved in upregulation of DNMT1 in HBx transfected cells, at least partly, contributed to the epigenetic inactivation of RIZ1. Taken together, our data found that HBx repressed RIZ1 expression via DNMT1, which offered a new mechanism of RIZ1 inactivation in HCC, except for the widely known DNA methylation. These results enriched the epigenetic mechanism by which HBx contributes to pathogenesis of HBV-HCC.


Assuntos
Carcinoma Hepatocelular/virologia , DNA (Citosina-5-)-Metiltransferases/metabolismo , Proteínas de Ligação a DNA/genética , Histona-Lisina N-Metiltransferase/genética , Neoplasias Hepáticas/virologia , MicroRNAs/genética , Proteínas Nucleares/genética , Transativadores/metabolismo , Fatores de Transcrição/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , DNA (Citosina-5-)-Metiltransferase 1 , DNA (Citosina-5-)-Metiltransferases/genética , Metilação de DNA , Proteínas de Ligação a DNA/metabolismo , Regulação para Baixo , Epigênese Genética , Técnicas de Silenciamento de Genes , Células Hep G2 , Vírus da Hepatite B/genética , Vírus da Hepatite B/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Recombinantes/metabolismo , Transativadores/genética , Fatores de Transcrição/metabolismo , Proteínas Virais Reguladoras e Acessórias
12.
Sci Rep ; 6: 23521, 2016 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-27009634

RESUMO

It is well accepted that HBx plays the major role in hepatocarcinogenesis associated with hepatitis B virus (HBV) infections. However, little was known about its role in regulating long noncoding RNAs (lncRNAs), a large group of transcripts regulating a variety of biological processes including carcinogenesis in mammalian cells. Here we report that HBx upregulates UCA1 genes and downregulates p27 genes in hepatic LO2 cells. Further studies show that the upregulated UCA1 promotes cell growth by facilitating G1/S transition through CDK2 in both hepatic and hepatoma cells. Knock down of UCA1 in HBx-expressing hepatic and hepatoma cells resulted in markedly increased apoptotic cells by elevating the cleaved caspase-3 and caspase-8. More importantly, UCA1 is found to be physically associated with enhancer of zeste homolog 2 (EZH2), which suppresses p27Kip1 through histone methylation (H3K27me3) on p27Kip1 promoter. We also show that knockdown of UCA1 in hepatoma cells inhibits tumorigenesis in nude mice. In a clinic study, UCA1 is found to be frequently up-regulated in HBx positive group tissues in comparison with the HBx negative group, and exhibits an inverse correlation between UCA1 and p27Kip1 levels. Our findings demonstrate an important mechanism of hepatocarcinogenesis through the signaling of HBx-UCA1/EZH2-p27Kip1 axis, and a potential target of HCC.


Assuntos
Carcinogênese/genética , Transformação Celular Viral/genética , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Neoplasias Hepáticas/genética , RNA Longo não Codificante/genética , Transativadores/genética , Animais , Proliferação de Células , Quinase 2 Dependente de Ciclina/genética , Inibidor de Quinase Dependente de Ciclina p27/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/virologia , Proteínas de Membrana , Camundongos , Camundongos Nus , Transplante de Neoplasias , Serina Endopeptidases , Transdução de Sinais , Transfecção , Proteínas Virais Reguladoras e Acessórias
13.
Sci Rep ; 5: 13781, 2015 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-26350239

RESUMO

Little is known about the roles of DNA methyltransferase 3A (DNMT3A) in gastric carcinogenesis. Here, we reported that the exogenous expression of DNMT3A promoted gastric cancer (GC) cell proliferation by accelerating the G1/S transition. Subsequently, p18INK4C was identified as a downstream target of DNMT3A. The elevated expression of DNMT3A suppressed p18INK4C at least at the transcriptional level. Depletion of p18INK4C expression in GC cells induced cell cycle progression, whereas its re-expression alleviated the effect of DNMT3A overexpression on G1/S transition. Furthermore, we found that DNMT3A modulated p18INK4C by directly binding to and silencing the p18INK4C gene via promoter hypermethylation. In clinical GC tissue specimens analyzed, the level of methylation of p18INK4C detected in tumor tissues was significantly higher than that in paired non-tumor tissues. Moreover, elevated level of DNMT3A expression was associated with the differentiation of GC tissues and was negatively correlated with the p18INK4C expression level. Taken together, our results found that DNMT3A contributes to the dysregulation of the cell cycle by repressing p18INK4C in a DNA methylation-dependent manner, suggesting that DNMT3A-p18INK4C axis involved in GC. These findings provide new insights into gastric carcinogenesis and a potential therapeutic target for GC that may be further investigated in the future.


Assuntos
Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Inibidor de Quinase Dependente de Ciclina p18/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Inativação Gênica , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Adulto , Idoso , Proliferação de Células , Metilação de DNA , DNA Metiltransferase 3A , Feminino , Pontos de Checagem da Fase G1 do Ciclo Celular/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Metástase Linfática , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Estadiamento de Neoplasias , Regiões Promotoras Genéticas , Neoplasias Gástricas/patologia
14.
PLoS One ; 10(4): e0123926, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25874772

RESUMO

The de-regulation of the miR-29 family and DNA methyltransferase 3A (DNMT3A) is associated with gastric cancer (GC). While increasing evidence indicates miR-29b/c could regulate DNA methylation by targeting DNMT3A, it is currently unknown if epigenetic silencing of miR-29b/c via promoter hypermethylation in GC is caused by abnormal expression of DNMT3A. Thus, we aimed to evaluate whether cross-talk regulation exists between miR-29b/c and DNMT3A and whether it is associated with a malignant phenotype in GC. First, wound healing and Transwell assays revealed that miR-29b/c suppresses tumor metastasis in GC. A luciferase reporter assay demonstrated that DNMT3A is a direct target of miR-29b/c. We used bisulfite genomic sequencing to analyze the DNA methylation status of miR-29b/c. The percentage of methylated CpGs was significantly decreased in DNMT3A-depleted cells compared to the controls. Furthermore, the involvement of DNMT3A in promoting GC cell migration was associated with the promoter methylation-mediated repression of CDH1. In 50 paired clinical GC tissue specimens, decreased miR-29b/c was significantly correlated with the degree of differentiation and invasion of the cells and was negatively correlated with DNMT3A expression. Together, our preliminary results suggest that the following process may be involved in GC tumorigenesis. miR-29b/c suppresses the downstream gene DNMT3A, and in turn, miR-29b/c is suppressed by DNMT3A in a DNA methylation-dependent manner. The de-regulation of both of miR-29b/c and DNMT3A leads to the epigenetic silencing of CDH1 and contributes to the metastasis phenotype in GC. This finding reveals that DNA methylation-associated silencing of miR-29b/c is critical for GC development and thus may be a therapeutic target.


Assuntos
Caderinas/genética , DNA (Citosina-5-)-Metiltransferases/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Neoplasias Gástricas/genética , Antígenos CD , Bioensaio , Caderinas/metabolismo , Carcinogênese/genética , Carcinogênese/metabolismo , Carcinogênese/patologia , Diferenciação Celular , Linhagem Celular Tumoral , Movimento Celular , Ilhas de CpG , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA , DNA Metiltransferase 3A , Feminino , Inativação Gênica , Genes Reporter , Humanos , Luciferases/genética , Luciferases/metabolismo , Masculino , MicroRNAs/metabolismo , Estadiamento de Neoplasias , Transdução de Sinais , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Neoplasias Gástricas/cirurgia , Cicatrização
15.
Mol Biol Rep ; 41(9): 5693-700, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24913034

RESUMO

miRNAs have emerged as crucial regulators in the regulation of development as well as human diseases, especially tumorigenesis. The aims of this study are to evaluate miR-30b-5p expression pattern and mechanism in gastric carcinogenesis due to which remains to be determined. Expression of miR-30b-5p was analyzed in 51 gastric cancer cases and 4 cell lines by qRT-PCR. The effect of DNA methylation on miR-30b-5p expression was assessed by MSP and BGS. In order to know whether DNMT1 increased miR-30b-5p promoter methylation, DNMT1 was depleted in cell lines AGS and BGC-823. The role of miR-30b-5p on cell migration was evaluated by wound healing assays. Decreased expression of miR-30b-5p was found in gastric cancer samples. In tumor, the expression level of miR-30b-5p was profound correlated with lymph node metastasis (P = 0.019). The level of miR-30b-5p may be restored by DNA demethylation and DNMT1 induced miR-30b-5p promoter methylation. In vitro functional assays implied that enforced miR-30b-5p expression affected cell migration, consistent with tissues analysis. Our findings uncovered that miR-30b-5p is significantly diminished in gastric cancer tissues, providing the first insight into the epigenetic mechanism of miR-30b-5p down-regulation, induced by DNMT1, and the role of miR-30b-5p in gastric cancer carcinogenesis. Overexpression of miR-30b-5p inhibited cell migration. Thus, miR-30b-5p may represent a potential therapeutic target for gastric cancer therapy.


Assuntos
DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA , Regulação Neoplásica da Expressão Gênica , MicroRNAs/metabolismo , Neoplasias Gástricas/genética , Linhagem Celular Tumoral , Movimento Celular , DNA (Citosina-5-)-Metiltransferase 1 , DNA (Citosina-5-)-Metiltransferases/genética , Regulação para Baixo , Deleção de Genes , Humanos , Metástase Linfática , MicroRNAs/genética , Regiões Promotoras Genéticas
16.
PLoS One ; 9(3): e92911, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24667323

RESUMO

DNA-methyltransferase (DNMT)-3A which contains DNMT3A1 and DNMT3A2 isoforms have been suggested to play a crucial role in carcinogenesis and showed aberrant expression in most cancers. Accumulated evidences also indicated that single nucleotide polymorphisms (SNP) in DNMT genes were associated with susceptibility to different tumors. We hypothesized that genetic variants in DNMT3A1 promoter region are associated with gastric cancer risk. We selected the tagSNPs from the HapMap database for the Chinese and genotyped in a case-control study to evaluate the association with gastric cancer (GC) in a Chinese population. We identified that the functional tagSNP rs7560488 T>C associated with a significantly increased risk of GC. In vitro functional analysis by luciferase reporter assay and EMSA indicated that the tagSNP rs7560488 T>C substantially altered transcriptional activity of DNMT3A1 gene via influencing the binding of some transcriptional factors, although a definite transcriptional factor remains to be established. Compared with TT homozygotes, subjects who were TC heterozygotes and CC homozygotes exhibited a reduced expression of DNMT3A1. Furthermore, stratified analysis showed that individuals who harbor TC or CC genotypes less than 60 years old were more susceptible to GC. Our results suggest that the genetic variations in the DNMT3A1 promoter contribute to the susceptibility to GC and also provide an insight that tagSNP rs7560488 T>C may be a promising biomarker for predicting GC genetic susceptibility and a valuable information in GC pathogenesis.


Assuntos
DNA (Citosina-5-)-Metiltransferases/genética , Predisposição Genética para Doença/genética , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas/genética , Neoplasias Gástricas/enzimologia , Neoplasias Gástricas/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/genética , Alelos , Povo Asiático/genética , Sequência de Bases , DNA Metiltransferase 3A , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Projeto HapMap , Humanos , Masculino , Pessoa de Meia-Idade , Fator de Transcrição AP-1/metabolismo , Transcrição Gênica/genética , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA