Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; : e2401377, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760901

RESUMO

Tumor-associated chronic inflammation severely restricts the efficacy of immunotherapy in cold tumors. Here, a programmable release hydrogel-based engineering scaffold with multi-stimulation and reactive oxygen species (ROS)-response (PHOENIX) is demonstrated to break the chronic inflammatory balance in cold tumors to induce potent immunity. PHOENIX can undergo programmable release of resiquimod and anti-OX40 under ROS. Resiquimod is first released, leading to antigen-presenting cell maturation and the transformation of myeloid-derived suppressor cells and M2 macrophages into an antitumor immune phenotype. Subsequently, anti-OX40 is transported into the tumor microenvironment, leading to effector T-cell activation and inhibition of Treg function. PHOENIX consequently breaks the chronic inflammation in the tumor microenvironment and leads to a potent immune response. In mice bearing subcutaneous triple-negative breast cancer and metastasis models, PHOENIX effectively inhibited 80% and 60% of tumor growth, respectively. Moreover, PHOENIX protected 100% of the mice against TNBC tumor rechallenge by electing a robust long-term antigen-specific immune response. An excellent inhibition and prolonged survival in PHOENIX-treated mice with colorectal cancer and melanoma is also observed. This work presents a potent therapeutic scaffold to improve immunotherapy efficiency, representing a generalizable and facile regimen for cold tumors.

2.
Small ; 18(50): e2107061, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36323618

RESUMO

In situ tumor vaccines (ITV) have been recognized as a promising antitumor strategy since they contain the entire tumor-specific antigens, avoiding tumor cells from evading immune surveillance due to antigen loss. However, the therapeutic benefits of ITV are limited by obstacles such as insufficient antigen loading, inadequate immune system activation, and immunosuppressive tumor microenvironments (TME). Herein, a tumor microenvironment-activated hydrogel platform (TED-Gel) with programmed drug release property is constructed for cascaded amplification of the anti-tumor immune response elicited by ITV. Both doxorubicin (Dox) and cytosine-phosphate-guanosine oligodeoxynucleotides (CpG) are released first, in which Dox induces immunogenic tumor cell death causing additional tumor antigen release and leading the dying primary tumor cells into autologous tumor vaccine, and the released CpG promotes antigen presenting cell activation. Subsequently, the decomposed scaffold materials in conjunction with CpG, turn the anti-inflammatory M2-like macrophages into the M1 type, reversing the immunosuppressive TME. With decomposition of the TED-Gel, large amounts of macromolecule anti-PD-L1 antibodies are liberated, reinvigorating the exhausted effector T cells. In vivo studies demonstrate that TED-Gel significantly inhibits the primary, distant and rechallenged tumor growth. Overall, the simple and powerful TED-Gel provides an alternative strategy for the future development of tumor vaccines with broad application.


Assuntos
Vacinas Anticâncer , Neoplasias , Humanos , Microambiente Tumoral , Hidrogéis , Neoplasias/tratamento farmacológico , Antígenos de Neoplasias , Doxorrubicina/farmacologia , Imunidade , Imunoterapia , Linhagem Celular Tumoral
3.
Acta Biomater ; 154: 510-522, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36241016

RESUMO

Combining the internal force-driven chemodynamic therapy (CDT) and the external energy-triggered photodynamic therapy (PDT) holds great promise to achieve an advanced anticancer effect based on reactive oxygen species (ROS). However, the insufficient oxy-substrates supply in tumor microenvironment, like hydrogen peroxide (H2O2) and oxygen (O2), is the Achilles heel that greatly restricts the efficacy of this ROS-based treatment. Herein, the construction of a copper peroxide-based tumor pH-responsive autocatalytic nanoreactor (CESAR), via an albumin-mediated biomimetic mineralization strategy is described. The decoration of human serum albumin endows the nanoreactor good hydrophilicity and biocompatibility, which is highly desired for the metal-based materials. Upon exposure to acidic tumor microenvironment, CESAR presents a pH-triggered disintegration with Cu2+, H2O2 and O2 generated instantly. The generated H2O2 complements the hyperoxide deficiency and initiates a localized Fenton-like reaction with the assistance of Cu2+ for highly toxic hydroxyl radicals (•OH) production for improving CDT. The evolved O2 gas enables hypoxia relief for enhanced Ce6-mediated PDT. This H2O2/O2 self-supplying strategy significantly amplifies the tumor oxidative damage and gains an optimal treatment outcome, which offers a new paradigm for optimizing the tumor therapeutic options limited by oxide or hyperoxide deficiency, not only for CDT/PDT, but also other oxy-substrates involved strategies. STATEMENT OF SIGNIFICANCE: The shortage of oxy-substrates in the tumor microenvironment remains a great challenge for ROS-based cancer therapy. Herein, we introduce human serum albumin as a scaffold to stabilize copper peroxide nanomaterials for constant production of H2O2 and O2 to enhance chemodynamic/photodynamic therapy. The tumor pH-triggered H2O2/O2 production and Cu2+ release are confirmed, assuring the strategy of a highly precise, effective way to destroy tumor without any side effects. This work lends new and exciting insights into the engineering design of autocatalytic oxy-substrates self-supply nanoreactor for overcoming the bottlenecks, like the oxy-substrates deficiency of CDT/PDT and the poor stability of metal peroxides, to achieve highly effective chemodynamic/photodynamic therapy.


Assuntos
Neoplasias , Fotoquimioterapia , Humanos , Peróxido de Hidrogênio , Cobre/farmacologia , Linhagem Celular Tumoral , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Microambiente Tumoral , Concentração de Íons de Hidrogênio , Albumina Sérica Humana
4.
Theranostics ; 11(14): 6936-6949, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34093863

RESUMO

Substantial progress has been made with cancer immunotherapeutic strategies in recent years, most of which mainly rely on enhancing the T cell response. However, sufficient tumor antigen information often cannot be presented to T cells, resulting in a failed effector T cell response. The innate immune system can effectively recognize tumor antigens and then initiate an adaptive immune response. Here, we developed a spontaneous multifunctional hydrogel (NOCC-CpG/OX-M, Ncom Gel) vaccine to amplify the innate immune response and harness innate immunity to launch and maintain a powerful adaptive immune response. Methods: Ncom Gel was formed by a Schiff base reaction between CpG-modified carboxymethyl chitosan (NOCC-CpG) and partially oxidized mannan (OX-M). The effects of the Ncom Gel vaccine on DCs and macrophages in vitro and antigen-specific humoral immunity and cellular immunity in vivo were studied. Furthermore, the antitumor immune response of the Ncom Gel vaccine and its effect on the tumor microenvironment were evaluated. Results: The Ncom Gel vaccine enhanced antigen presentation to T cells by facilitating DC uptake and maturation and inducing macrophages to a proinflammatory subtype, further leading to a T cell-mediated adaptive immune response. Moreover, the innate immune response could be amplified via the promotion of antigen-specific antibody production. The Ncom Gel vaccine reversed the tumor immune microenvironment to an inflamed phenotype and showed a significant antitumor response in a melanoma model. Conclusions: Our research implies the potential application of injectable hydrogels as a platform for tumor immunotherapy. The strategy also opens up a new avenue for multilayered cancer immunotherapy.


Assuntos
Imunidade Adaptativa/efeitos dos fármacos , Vacinas Anticâncer/imunologia , Hidrogéis/química , Hidrogéis/farmacologia , Imunidade Inata/efeitos dos fármacos , Imunoterapia/métodos , Melanoma/imunologia , Microambiente Tumoral/efeitos dos fármacos , Imunidade Adaptativa/imunologia , Animais , Linhagem Celular Tumoral , Quitosana/química , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Feminino , Hidrogéis/síntese química , Inflamação/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Mananas/química , Melanoma/terapia , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Varredura , Ovalbumina/imunologia , Reologia , Bases de Schiff/química , Linfócitos T/imunologia , Microambiente Tumoral/imunologia
5.
Biomaterials ; 272: 120795, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33836292

RESUMO

Since the 5-year survival rate of pancreatic cancer is only 10.0%, new therapies are urgently needed. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis specifically on tumor cells, nevertheless its clinical application was seriously restricted by resistance and short in vivo half-life. Herein, a novel multifunctional R6ST protein equipped with cell penetrating peptides R6, intrinsic apoptosis inducing tetrapeptide AVPI and soluble TRAIL was designed and constructed. Then, it was recruited to prepare self-sustained nanoplatform (SSN) to reverse TRAIL-resistance of pancreatic cancer through simultaneously promoting extrinsic and intrinsic apoptotic pathway, as well to elongate circulation time. Once administrated, high tumor accumulation and cellular uptake of SSN were achieved through prolonged circulation time, targeting ability of soluble TRAIL to death receptors and positive-charged R6, and further enhanced through reversed upregulation of death receptors on TRAIL-resistant tumor cells by the cumulated artesunate released in cytoplasm as a positive feedback loop. Furthermore, this loop simultaneously promoted extrinsic apoptosis of TRAIL fragment via the upregulated death receptors on TRAIL-resistant pancreatic cancer cells and intrinsic apoptosis of AVPI tetrapeptide via the efficient accumulation and uptake of R6ST on SSN. Hence, SSN exhibited synergistic antitumor effect and provided a new strategy for TRAIL-resistant pancreatic cancer therapy.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Neoplasias Pancreáticas , Apoptose , Linhagem Celular Tumoral , Humanos , Neoplasias Pancreáticas/tratamento farmacológico , Receptores do Ligante Indutor de Apoptose Relacionado a TNF , Ligante Indutor de Apoptose Relacionado a TNF
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA