Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Life Sci ; 346: 122618, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38614306

RESUMO

AIMS: This study was designed to investigate the role of growth arrest and DNA damage-inducible ß (GADD45B) in modulating fear memory acquisition and elucidate its underlying mechanisms. MAIN METHODS: Adeno-associated virus (AAV) that knockdown or overexpression GADD45B were injected into ventral hippocampal CA1 (vCA1) by stereotactic, and verified by fluorescence and Western blot. The contextual fear conditioning paradigm was employed to examine the involvement of GADD45B in modulating aversive memory acquisition. The Y-maze and novel location recognition (NLR) tests were used to examine non-aversive cognition. The synaptic plasticity and electrophysiological properties of neurons were measured by slice patch clamp. KEY FINDINGS: Knockdown of GADD45B in the vCA1 significantly enhanced fear memory acquisition, accompanied by an upregulation of long-term potentiation (LTP) expression and intrinsic excitability of vCA1 pyramidal neurons (PNs). Conversely, overexpression of GADD45B produced the opposite effects. Notably, silencing the activity of vCA1 neurons abolished the impact of GADD45B knockdown on fear memory development. Moreover, mice with vCA1 GADD45B overexpression exhibited impaired spatial cognition, whereas mice with GADD45B knockdown did not display such impairment. SIGNIFICANCE: These results provided compelling evidence for the crucial involvement of GADD45B in the formation of aversive memory and spatial cognition.


Assuntos
Região CA1 Hipocampal , Medo , Proteínas GADD45 , Camundongos Endogâmicos C57BL , Animais , Masculino , Medo/fisiologia , Camundongos , Região CA1 Hipocampal/metabolismo , Região CA1 Hipocampal/fisiologia , Cognição/fisiologia , Memória/fisiologia , Potenciação de Longa Duração/fisiologia , Aprendizagem em Labirinto/fisiologia , Plasticidade Neuronal/fisiologia , Antígenos de Diferenciação/metabolismo , Antígenos de Diferenciação/genética , Técnicas de Silenciamento de Genes
2.
Environ Toxicol ; 39(5): 2855-2868, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38293814

RESUMO

Numerous studies have elucidated the intricate relationship between bronchial asthma and small cell lung cancer (SCLC), as well as the role lipid metabolism genes play in transitioning from bronchial asthma to SCLC. Despite this, the predictive power of single gene biomarkers remains insufficient and necessitates the development of more accurate prognostic models. In our study, we downloaded and preprocessed scRNA-seq of SCLC from the GEO database GSE164404 and severe asthma scRNA-seq from GSE145013 using the Seurat package. Using the MSigDB database and geneCard database, we selected lipid metabolism-related genes and performed scRNA-seq data analysis from the gene expression GEO database, aiming to uncover potential links between immune signaling pathways in bronchial asthma and SCLC. Our investigations yielded differentially expressed genes based on the scRNA-seq dataset related to lipid metabolism. We executed differential gene analysis, gene ontology, and Kyoto Encyclopedia of Genes and Genomes analyses. In-depth GSEA pathway activation analysis, crucial target gene predictions via protein-protein interactions, and key cluster gene evaluations for differential and diagnostic ROC values correlation analysis confirmed that key cluster genes are significant predictors for the progression of bronchial asthma to SCLC. To validate our findings, we performed wet laboratory experiments using real-time quantitative PCR to assess the expression of these relevant genes in SCLC cell lines. In conclusion, this research proposes a novel lipid metabolism-related gene marker that can offer comprehensive insights into the pathogenesis of bronchial asthma leading to SCLC. Although this study does not directly focus on senescence-associated molecular alterations, our findings in the lipid metabolism genes associated with inflammation and cancer progression offer valuable insights for further research targeting senescence-related changes in treating inflammatory diseases.


Assuntos
Asma , Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Humanos , Carcinoma de Pequenas Células do Pulmão/genética , Metabolismo dos Lipídeos/genética , Biomarcadores Tumorais/genética , Neoplasias Pulmonares/genética , Asma/genética
3.
J Alzheimers Dis ; 86(4): 1959-1971, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35253768

RESUMO

BACKGROUND: Obesity is a worldwide health problem that has been implicated in many diseases, including Alzheimer's disease (AD). AD is one of the most common neurodegenerative disorders and is characterized by two pathologies, including extracellular senior plaques composed of amyloid-ß (Aß) and intracellular neurofibrillary tangles (NFTs) consisting of abnormally hyperphosphorylated tau. According to current research, a high-fat diet (HFD) could exacerbate Aß accumulation, oxidative damage, and cognitive defects in AD mice. However, the accurate role of HFD in the pathogenesis of AD is far more unclear. OBJECTIVE: To explore the accurate role of HFD in the pathogenesis of AD. METHODS: Open Field, Barns Maze, Elevated zero-maze, Contextual fear condition, Tail suspension test, western blotting, immunofluorescence, Fluoro-Jade C Labeling, Perls' Prussian blue staining, and ELISA were used. RESULTS: HFD caused nonheme iron overload in the brains of APPswe/PS1dE9 (APP/PS1) mice. Furthermore, the administration of M30 (0.5 mg/kg) for iron chelation once every 2 days per os (p.o.) for 1 month remitted memory deficits caused by HFD in APP/PS1 mice. Notably, a variety of hematological parameters in whole blood had no difference after iron chelation. In addition, iron chelation effectively reduced synaptic impairment in hippocampus and neuronal degeneration in cortex in the HFD-fed APP/PS1 mice. Meanwhile, iron chelation decreased Aß1-40 and Aß1-42 level as well as neuroinflammation in HFD-fed APP/PS1 mice. CONCLUSION: These data enhance our understanding of how HFD aggravates AD pathology and cognitive impairments and might shed light on future preclinical studies.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides , Animais , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Humanos , Quelantes de Ferro , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/etiologia , Camundongos , Camundongos Transgênicos
4.
Tohoku J Exp Med ; 256(1): 19-26, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35067491

RESUMO

Osteosarcoma is a primary malignancy of mesenchymal origin, and its metastasis and multidrug resistance remain major problems affecting the therapeutic effect. This study aimed to evaluate the efficacy and underlying mechanism of monoacylglycerol lipase (MAGL) on osteosarcoma progression. MAGL expression was downregulated by shMAGL or JZL184 (an MAGL inhibitor) and upregulated through plasmid. RT-PCR and Western blot were utilized to determine the expression of target molecules. CCK-8 assay, transwell assay and ROS assay were performed to investigate the inhibitory effect of MAGL on the growth and metastasis of osteosarcoma cells. The role of JZL184 on tumor growth was examined in cisplatin-resistant MG-63 (MG-63/R) xenograft model. MAGL was highly expressed in osteosarcoma cells and tissues. MAGL knockdown significantly impeded the proliferation, clone formation, invasion and migration of MG-63 cells, whereas opposite result was observed in 143B cells with MAGL overexpression. Likewise, an MAGL inhibitor JZL184 displayed reduced viability, clone formation, invasion and migration of osteosarcoma cells. Western blot of the epithelial mesenchymal transition (EMT)-related proteins indicated that MAGL knockdown or JZL184 could upregulated E-cadherin expression and downregulated vimentin expression. In vitro and in vivo experiments indicated that JZL184 re-sensitized MG-63/R cells to cisplatin. In summary, MAGL regulated osteosarcoma by modulating EMT, and JZL184 might be a promising agent for osteosarcoma patients who are resistant to cisplatin.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Cisplatino/farmacologia , Transição Epitelial-Mesenquimal , Humanos , Monoacilglicerol Lipases/genética , Osteossarcoma/tratamento farmacológico
5.
Onco Targets Ther ; 14: 4791-4804, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34531665

RESUMO

INTRODUCTION: Osteosarcoma is the most common primary malignancy of the bone among adolescents and children. Despite intensive chemotherapy and aggressive surgery, the 5-year survival rate of osteosarcoma still falls under 70%, mainly due to its tendency to metastasize and to develop drug resistance. Therefore, new treatments for osteosarcoma are urgently needed. HGF/c-Met signaling pathway, when dysregulated, is involved in the onset, progression and metastasis of various cancers, making the HGF/c-Met axis a promising therapeutic target. METHODS: In this study, we found Met to be a cancer-promoting gene in osteosarcoma as well, and aimed to investigate the role of a c-met inhibitor (PHA-665752) in osteosarcoma. For this purpose, two human osteosarcoma cell lines (143B and U2OS) were introduced in this study and treated with PHA-665752. CCK8 cell proliferation assay was performed to obtain the IC50 value of PHA-665752 for 143B and U2OS. After that, colony formation assay, transwell migration and invasion assay and wound-healing assay were performed. Furthermore, a tumor-transplanted mouse model was used for in vivo experiments. RESULTS: Our results showed that PHA-665752 could suppress osteosarcoma progression, promote apoptosis and inhibit proliferation of human osteosarcoma cells. Moreover, we found ERK1/2 pathway to be an important mediator underlying the osteosarcoma-suppressing function of PHA-665752. LY3214996, a highly selective inhibitor of the ERK1/2 pathway, was able to antagonize the effects of PHA-665752 in osteosarcoma. Finally, in vivo experiments indicated that PHA-665752 suppressed tumor growth in a tumor-transplanted mouse model. CONCLUSION: Taken together, Met provided a druggable target for osteosarcoma and PHA-665752 is a promising candidate for anti-osteosarcoma treatments.

6.
Medicine (Baltimore) ; 100(4): e24558, 2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33530285

RESUMO

ABSTRACT: Melanoma can spread to the bone by metastasis and is relevant to a poor outcome. However, because of the rarity of melanoma patients with bone metastasis, the prognostic postoperative survival factors of them have not been elucidated. The aim of this special population-based cohort was to elucidate the prognostic factors associated with postoperative survival. The Surveillance, Epidemiology, and End Results database was used to extract postoperative survival data relating to patients with melanoma and bone metastasis at diagnosis between 2010 and 2016, along with data on a range of potential postoperative prognostic factors. We then investigated the potential postoperative prognostic roles of these factors using a Cox regression model and the Kaplan-Meier analysis. In all, the Surveillance, Epidemiology, and End Results database included 186 cases. Regarding overall survival, the 1-, 3-, and 5-year overall survival rates for the entire cohort were 36.2%, 15.4%, and 9.5%, respectively. Regarding cancer-specific survival, the 1-, 3-, and 5-year cancer-specific survival rates were 42.0%, 23.2%, and 16.6%, respectively. Within a cohort of melanoma patients with bone metastasis after surgery, our analysis showed that a smaller tumor size and the lack of metastases at other sites were predictors of survival.


Assuntos
Neoplasias Ósseas/secundário , Melanoma/mortalidade , Idoso , Neoplasias Ósseas/patologia , Neoplasias Ósseas/cirurgia , Bases de Dados Factuais , Feminino , Humanos , Estimativa de Kaplan-Meier , Masculino , Melanoma/patologia , Melanoma/terapia , Modelos de Riscos Proporcionais , Estudos Retrospectivos , Programa de SEER , Análise de Sobrevida
7.
Drug Des Devel Ther ; 14: 5521-5533, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33364748

RESUMO

BACKGROUND: Osteoarthritis (OA) is a prevalent articular disorder and has no entirely satisfactory treatment. Punicalagin (PUG) is a polyphenol which has shown multiple pharmacological effects on various diseases. However, the role of PUG in the treatment of OA has not been well defined. METHODS: The effects of PUG on anti-oxidative stress, anti-apoptosis, extracellular matrix (ECM) degradation and autophagy were evaluated in chondrocytes through Western blot and immunofluorescence (IF) staining. Meanwhile, the effects of PUG on destabilization of the medial meniscus (DMM) model were also assessed in vivo by performing histopathologic analysis and IF staining. RESULTS: In vitro, PUG treatment not only increased the level of HO-1 and SOD1 against oxidative stress but also suppressed the expression of apoptotic proteins and inhibited ECM degradation. Meanwhile, PUG treatment activated autophagy and restores autophagic flux in chondrocytes after tert-butyl hydroperoxide (TBHP) insult, inhibition of autophagy by 3-methyladenine (3-MA) partly abrogated the protective effects of PUG on chondrocytes. In vivo, degeneration of the articular cartilage following DMM was also ameliorated by PUG treatment. CONCLUSION: PUG prevents the progression of OA through inhibition of apoptosis, oxidative stress and ECM degradation in chondrocytes, which mediated by the activation of autophagy.


Assuntos
Apoptose/efeitos dos fármacos , Condrócitos/efeitos dos fármacos , Matriz Extracelular/efeitos dos fármacos , Taninos Hidrolisáveis/farmacologia , Osteoartrite/tratamento farmacológico , terc-Butil Hidroperóxido/antagonistas & inibidores , Animais , Autofagia/efeitos dos fármacos , Condrócitos/metabolismo , Modelos Animais de Doenças , Matriz Extracelular/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Osteoartrite/metabolismo , terc-Butil Hidroperóxido/farmacologia
8.
Neuroreport ; 29(8): 678-684, 2018 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-29596152

RESUMO

Drug dependence and withdrawal syndrome induced by abrupt cessation of opioid administration remain a severe obstacle in the clinical treatment of chronic pain and opioid drug addiction. One of the key symptoms during opioid withdrawal is hyperalgesia. The mechanism of opioid withdrawal-induced hyperalgesia remains unclear. P2X2 and P2X3 receptors, members of P2X receptor subunits, act as the integrator of multiple forms of noxious stimuli and play an important role in nociception transduction of chronic neuropathic and inflammatory pain. The process of P2X2 and P2X3 receptor antagonism inhibits inflammatory hyperalgesia, involving the spinal opioid system. However, the role of P2X receptors involved in opioid withdrawal-induced hyperalgesia has seldom been discussed. To explore the role of P2X2 and P2X3 receptors in the opioid-induced hyperalgesia, heroin self-administration rats were adopted, and the thermal and mechanical nociceptive thresholds were evaluated using the paw withdrawal test after abstinence from heroin for 8 days. In addition, the expressions of P2X2 and P2X3 receptors in dorsal root ganglia were analyzed by immunofluorescence. The results showed that after 8 days of abstinence, heroin self-administration rats showed thermal hyperalgesia and mechanical allodynia. Meanwhile, the expressions of the P2X2 and P2X3 receptors in dorsal root ganglia were increased. These results suggest that upregulation of P2X2 and P2X3 receptors might partially play a role in heroin withdrawal-induced hyperalgesia.


Assuntos
Dependência de Heroína/metabolismo , Hiperalgesia/metabolismo , Receptores Purinérgicos P2X2/metabolismo , Receptores Purinérgicos P2X3/metabolismo , Síndrome de Abstinência a Substâncias/metabolismo , Analgésicos Opioides/administração & dosagem , Analgésicos Opioides/efeitos adversos , Animais , Modelos Animais de Doenças , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Heroína/administração & dosagem , Heroína/efeitos adversos , Temperatura Alta , Hiperalgesia/etiologia , Masculino , Limiar da Dor/efeitos dos fármacos , Limiar da Dor/fisiologia , Ratos Sprague-Dawley , Autoadministração , Tato , Regulação para Cima
9.
J Environ Sci (China) ; 25 Suppl 1: S63-8, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25078842

RESUMO

The Direct Pink 12B dye was treated by iron-carbon micro-electrolysis (ICME) and Fenton oxidation. The degradation pathway of Direct Pink 12B dye was inferred by ultraviolet visible (UV-Vis), infrared absorption spectrum (IR) and high performance liquid chromatography-mass spectrometry (HPLC-MS). The major reason of decolorization was that the conjugate structure was disrupted in the iron-carbon micro-electrolysis (ICME) process. However, the dye was not degraded completely because benzene rings and naphthalene rings were not broken. In the Fenton oxidation process, the azo bond groups surrounded by higher electron cloud density were first attacked by hydroxyl radicals to decolorize the dye molecule. Finally benzene rings and naphthalene rings were mineralized to H2O and CO2 under the oxidation of hydroxyl radicals.


Assuntos
Compostos Azo/química , Eletrólise , Carbono/química , Cromatografia Líquida de Alta Pressão , Peróxido de Hidrogênio/química , Ferro/química , Espectrometria de Massas , Oxirredução , Espectrofotometria Infravermelho , Espectrofotometria Ultravioleta , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA