Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Nutr Food Res ; 67(24): e2200525, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37909476

RESUMO

SCOPE: Aged laying hen is recently suggested as a more attractive animal model than rodent for studying nonalcoholic fatty liver disease (NAFLD) of humans. This study aims to reveal effects and metabolic regulation mechanisms of taurine alleviating NAFLD by using the aged laying hen model. METHODS AND RESULTS: Liver histomorphology and biochemical indices show 0.02% taurine effectively alleviated fat deposition and liver damage. Comparative liver lipidomics and gene expressions analyses reveal taurine promoted lipolysis, fatty acids oxidation, lipids transport, and reduced oxidative stress in liver. Furthermore, comparative serum metabolomics screen six core metabolites negatively correlated with NAFLD, including linoleic acid, gamma-linolenic acid, pantothenate, L-methionine, 2-methylbutyroylcarnitine, L-carnitine; and two core metabolites positively correlated with NAFLD, including lysophosphatidylcholine (14:0/0:0) and lysophosphatidylcholine (16:0/0:0). Metabolic pathway analysis reveals taurine mainly regulated linoleic acid metabolism, cysteine and methionine metabolism, carnitine metabolism, pantothenic acid and coenzyme A biosynthesis metabolism, and glycerophospholipid metabolism to up-adjust levels of six negatively correlated metabolites and down-adjust two positively correlated metabolites for alleviating NAFLD of aged hens. CONCLUSION: This study firstly reveals underlying metabolic mechanisms of taurine alleviating NAFLD using the aged hen model, thereby laying the foundation for taurine's application in the prevention of NAFLD in both human and poultry.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Feminino , Humanos , Idoso , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Galinhas , Lipidômica , Taurina/farmacologia , Lisofosfatidilcolinas , Fígado/metabolismo , Metabolômica/métodos
2.
Curr Issues Mol Biol ; 45(5): 4017-4034, 2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37232725

RESUMO

1α,25-Dihydroxyvitamin D3 (VitD3) is the active form of vitamin D, and it regulates gene expression and protein synthesis in mammalian follicle development. However, the function of VitD3 in the follicular development of layers remains unclear. This study investigated, through in vivo and in vitro experiments, the effects of VitD3 on follicle development and steroid hormone biosynthesis in young layers. In vivo, ninety 18-week-old Hy-Line Brown laying hens were randomly divided into three groups for different treatments of VitD3 (0, 10, and 100 µg/kg). VitD3 supplementation promoted follicle development, increasing the number of small yellow follicles (SYFs) and large yellow follicles (LYFs) and the thickness of the granulosa layer (GL) of SYFs. Transcriptome analysis revealed that VitD3 supplementation altered gene expression in the ovarian steroidogenesis, cholesterol metabolism, and glycerolipid metabolism signaling pathways. Steroid hormone-targeted metabolomics profiling identified 20 steroid hormones altered by VitD3 treatment, with 5 being significantly different among the groups. In vitro, it was found that VitD3 increased cell proliferation, promoted cell-cycle progression, regulated the expression of cell-cycle-related genes, and inhibited the apoptosis of granulosa cells from pre-hierarchical follicles (phGCs) and theca cells from prehierarchical follicles (phTCs). In addition, the steroid hormone biosynthesis-related genes, estradiol (E2) and progesterone (P4) concentrations, and vitamin D receptor (VDR) expression level was significantly altered by VitD3. Our findings identified that VitD3 altered the gene expression related to steroid metabolism and the production of testosterone, estradiol, and progesterone in the pre-hierarchical follicles (PHFs), resulting in positive effects on poultry follicular development.

3.
Front Vet Sci ; 9: 880152, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35573417

RESUMO

Endophytic fungus represents microorganisms existing within the healthy plant organs, which can significantly influence metabolic product production in plants, a process with great research value and broad prospects for development. To investigate the effect of fermentation with probiotic cultures on the endophytic fungal diversity and composition of Astragalus membranaceus, we used single-molecular, real-time sequencing (Pacific Biosciences) for 18S ribosomal RNA (rRNA) sequencing. The results showed that the endophytic fungi of A. membranaceus mainly belonged to Aspergillus, Penicillium, Cystofilobasidium, Candida, Guehomyces, and Wallemia. Furthermore, the endophytic fungal diversity and abundance of A. membranaceus were more variable after fermentation with Enterococcus faecium and/or Lactobacillus plantarum. Our data lays a solid and comprehensive foundation for further exploration of endophytic fungi from A. membranaceus as potential sources of functional compounds.

4.
Mol Reprod Dev ; 89(2): 95-103, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35122350

RESUMO

Forkhead box L2 (FOXL2), one member in the superfamily of forkhead transcription factors, is a core transcription factor specifically expressed in ovarian granulosa cells and is essential for the development of follicles. FOXL2 has been shown to regulate the transcription of genes encoding enzymes that synthesize steroid hormones and estrogen receptors and regulate the expression of collagen genes in granulosa cells. This study explored the effect of FOXL2 on collagen gene expression in granulosa cells by overexpressing Foxl2 in pregranulosa cells, prehierarchical follicles and preovulation follicle granulosa cells. The results showed that FOXL2 regulated the expression of several genes encoding collagens in chicken granulosa cells and that overexpression of Foxl2 significantly reduced the messenger RNA and protein levels of Col4a1 in different granulosa cells. Moreover, luciferase reporter and chromatin immunoprecipitation assays were performed to study how FOXL2 regulates the expression of collagen genes, and the results showed that FOXL2 directly regulated the expression of Col4a1 by binding to the motif of CAGCAGCACCAGCAG between -640 and -625 bp upstream of the coding region. The results indicated that FOXL2 could regulate the components of the extracellular matrix; however, the biological significance of this regulation needs further clarification.


Assuntos
Galinhas , Células da Granulosa , Animais , Galinhas/genética , Galinhas/metabolismo , Colágeno/metabolismo , Colágeno/farmacologia , Feminino , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Células da Granulosa/metabolismo , Folículo Ovariano/metabolismo
5.
Gen Comp Endocrinol ; 315: 113939, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34710471

RESUMO

Aromatase, encoded by CYP19A1, is responsible for the conversion of androgen to estrogen, which plays a vital role in the development and function of the ovary and functions in many other physiological processes in both sexes. Instead of being expressed in ovarian granulosa cells, as in mammals, CYP19A1 is expressed in chickens in the theca cells of ovarian follicles, and the mechanism of CYP19A1 expression regulation remains unknown. Here, using immunofluorescence and western blotting assay, we first confirmed that CYP19A1 and FOXL2 (Forkheadbox L2) were coexpressed in pre-granulosa cells of female chicken embryonic gonads, while FOXL2 did not affect aromatase expression at embryonic stages. Second, our research showed that CYP19A1, ESR1 (estrogen receptor alpha), ESR2 (estrogen receptor beta) and NR5A2 (liver receptor homologue-1) were coexpressed in the theca cell layers of chicken small yellow follicles. There was cross-talk between CYP19A1 and candidate transcription factors (ESR1, ESR2 and NR5A2), which was identified by generating a reliable theca cell culture model. Using luciferase assays in theca cells and chicken embryonic fibroblast (DF-1) cells, the results suggested that ESR1 and NR5A2 had potential effects on CYP19A1 promoter activity in chickens. Overexpression of ESR1, ESR2 and NR5A2 in chicken embryonic fibroblast (DF-1) cells upregulated the protein expression of CYP19A1, mutually restricted each other and formed a potential regulatory network to coordinate the expression of CYP19A1. To conclude, our results indicated that FOXL2 cannot regulate the expression of CYP19A1 at chicken embryonic stages and after sexual maturity, ESR1, ESR2 and NR5A2 form a functional network to affect the expression of CYP19A1. These results laid a foundation for further research on the transcriptional regulation of chicken aromatase.


Assuntos
Aromatase , Galinhas , Receptor alfa de Estrogênio , Receptor beta de Estrogênio , Regulação Enzimológica da Expressão Gênica , Receptores Citoplasmáticos e Nucleares , Animais , Aromatase/genética , Embrião de Galinha , Galinhas/metabolismo , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/metabolismo , Feminino , Células da Granulosa/metabolismo , Masculino , Receptores Citoplasmáticos e Nucleares/metabolismo , Células Tecais/metabolismo
6.
Gene ; 812: 146097, 2022 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-34902510

RESUMO

Multiple Wilms tumor gene 1 (WT1) splicing variants are expressed in mammals, and these variants regulate tumorigenesis and mediate the development of multiple tissues and organs, including gonads. However, WT1 splicing variants (+KTS or -KTS) are expressed in only two nonmammalian vertebrates, and unexpectedly, their functions in chicken ovaries remain elusive. Progesterone (P4) secreted by chicken granulosa cells (GCs) participates in various physiological processes and plays an important role in maintaining reproductive performance. The purpose of this study was to investigate the effect of WT1(+KTS) and WT1(-KTS) on chicken P4 secretion in preovulatory GCs. First, we detected WT1 mRNA expression in GCs from follicles of different developmental stages by Quantitative real-time PCR (RT-qPCR) and found that WT1 mRNA expression was considerably increased in preovulatory GCs compared with prehierarchical GCs. Primary cells collected from preovulatory follicles were treated with WT1(+KTS) or WT1(-KTS) overexpression vectors and subsequently cultured in the absence or presence of follicle-stimulating hormone (FSH). The mRNA levels of FSH-receptor (FSHR) and steroidogenesis genes were determined by RT-qPCR, and the P4 levels in the cell supernatants were measured by radioimmunoassay (RIA). Both WT1(+KTS) and WT1(-KTS) significantly decreased P4 secretion due to a reduction in FSHR, STAR and CYP11A1 mRNA levels. Western blotting revealed that ERK1/2 and BRAF phosphorylation levels were suppressed after overexpression of WT1(+KTS) or WT1(-KTS), whereas total protein and mRNA levels were not significantly changed. In addition, CREB protein and phosphorylation levels were inhibited after overexpression of WT1(+KTS) or WT1(-KTS). In conclusion, WT1(+KTS) and WT1(-KTS) inhibited CREB protein activity and significantly reduced FSHR, STAR and CYP11A1 mRNA levels, which subsequently suppressed FSH-induced P4 secretion in preovulatory GCs by modulating ERK1/2 signaling.


Assuntos
Hormônio Foliculoestimulante/metabolismo , Células da Granulosa/citologia , Progesterona/farmacologia , Proteínas WT1/genética , Proteínas WT1/metabolismo , Processamento Alternativo , Animais , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Enzima de Clivagem da Cadeia Lateral do Colesterol/genética , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Células da Granulosa/efeitos dos fármacos , Células da Granulosa/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fosfoproteínas/genética , Reação em Cadeia da Polimerase em Tempo Real , Receptores do FSH/genética , Regulação para Cima
7.
Gen Comp Endocrinol ; 276: 69-76, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30851298

RESUMO

The function of oocyte-derived growth differentiation factor 9 (GDF9) in ovarian follicles has thus far been poorly defined in avian species compared with the defined function in mammals. Our aim here is to investigate the effects of GDF9 on steroidogenesis and on chicken ovarian granulosa cell (GC) mitosis. Primary GCs from both prehierarchical (6-8 mm in diameter, phGCs) and preovulatory follicles (F1-F5, poGCs) were cultured in the presence or absence of the GDF9 protein. The progesterone (P4) levels in the culture medium were then measured by radioimmunoassay (RIA), and the expression levels of steroidogenesis genes were detected by quantitative PCR. We found that GDF9 alone showed no significant effect on the P4 levels by regulating the expression of steroidogenesis genes, such as STAR, CYP11A1 and HSD3B. Further experiments indicated that GDF9 promoted follicle-stimulating hormone (FSH)-induced P4 production and STAR expression. GDF9 also rescued the FSH-induced decrease of FSH receptor (FSHR) expression but had no effect on the forskolin-induced P4, STAR and forskolin-inhibited FSHR expression levels, suggesting that GDF9 might achieve its regulatory role of P4 by enhancing FSHR and STAR expression. In addition, GDF9 also promoted GC cell cycle progression, regulated the gene transcription of related genes, potentiated DNA replication and inhibited apoptosis. Interestingly, these effects differed between the phGCs and the poGCs. To our knowledge, this is the first report that illustrates the function of GDF9 on chicken GCs and the effects on ovarian steroidogenesis. Our findings highlight the regulation of central oocytes on the surrounding granulosa cells and emphasize the interaction between paracrine signals and endocrine hormones on ovarian progesterone production; these findings contribute to the understanding of the development of avian ovarian follicles.


Assuntos
Galinhas/metabolismo , Hormônio Foliculoestimulante/farmacologia , Células da Granulosa/metabolismo , Fator 9 de Diferenciação de Crescimento/farmacologia , Progesterona/biossíntese , Animais , Apoptose/efeitos dos fármacos , Proteínas Aviárias/genética , Proteínas Aviárias/metabolismo , Ciclo Celular/efeitos dos fármacos , Células Cultivadas , Colforsina/farmacologia , DNA/biossíntese , Replicação do DNA/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Células da Granulosa/efeitos dos fármacos , Humanos , Ovulação/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Radioimunoensaio
8.
Artigo em Inglês | MEDLINE | ID: mdl-29772405

RESUMO

Previous studies have shown that theca and granulosa cell layers in follicles do not play the same roles in mammals and birds, especially regarding the synthesis of estrogen. The functions of these two cell types have been well characterized in cattle, but they remain unclear in chickens. To clarify this issue, a comparison of small yellow follicles (SYFs) in chickens and cattle at different follicular development stages was done by weighted gene co-expression network analysis (WGCNA). The modules obtained from WGCNA were used for further identification of the key genes associated with CYP19A1 expression. Module preservation analysis showed high similarity between cow_D (the follicular phase before the LH surge) and chicken_SYF (small yellow follicle between 6 and 8 mm in diameter) datasets, and 10 top hub genes highly associated with CYP19A1 expression in chicken SYFs were identified in each module. A comparison of the transcriptomes of theca and granulosa cells (TCs and GCs) between chicken SYFs and cattle follicles at the differentiation stage, as well as the aforementioned hub genes, revealed that ESR2 is a potential regulator of CYP19A1 expression in the theca cells of chicken SYFs. Furthermore, 197 cell-specific (179 in theca and 18 in granulosa) and 235 cell-biased expressed genes (196 in theca and 39 in granulosa) in chicken small yellow follicles were also identified by transcriptomic comparison of theca and granulosa cells.


Assuntos
Aromatase/genética , Bovinos/genética , Galinhas/genética , Receptor beta de Estrogênio/genética , Regulação da Expressão Gênica no Desenvolvimento , Folículo Ovariano/metabolismo , Transcriptoma , Animais , Bovinos/crescimento & desenvolvimento , Galinhas/crescimento & desenvolvimento , Feminino , Redes Reguladoras de Genes , Células da Granulosa/citologia , Células da Granulosa/metabolismo , Folículo Ovariano/crescimento & desenvolvimento , Células Tecais/citologia , Células Tecais/metabolismo
9.
Gen Comp Endocrinol ; 247: 1-7, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28347743

RESUMO

Many studies have suggested the important role of estrogen in ovarian differentiation and development of vertebrates including chicken. Cytochrome P450 aromatase, encoded by CYP19A1, is a key enzyme in estrogen synthesis, but the mechanism of CYP19A1 regulation in chicken remains unknown. Here, we found that CYP19A1 was only expressed in the theca cell layers of chicken ovary follicles. Steroidogenic factor 1 (SF-1, also named as nuclear receptor subfamily 5 group A member 1, NR5A1), a potential regulators, was expressed in both the theca cell layers and granulosa cell layers. Forkheadbox L2 (FOXL2), another potential regulator, was only expressed in the granulosa cell layers. Using luciferase assays in vitro, we found that SF-1 could activate the promoter of CYP19A1 by binding to the nuclear receptor half-site (5'-TCAAGGTCA-3') from -280 to -271 base pairs. FOXL2 did not activate the promoter of chicken CYP19A1 gene in either 293T or DF-1 cells. Overexpression of SF-1 in DF-1 cells upregulated aromatase expression, but FOXL2 could not. Taken together, our results indicated that SF-1 activates CYP19A1 mRNA expression via a conserved binding site in chicken ovary, but FOXL2 may not affect the expression of CYP19A1.


Assuntos
Aromatase/genética , Galinhas/genética , Fator Esteroidogênico 1/metabolismo , Células Tecais/metabolismo , Animais , Aromatase/metabolismo , Sítios de Ligação , Feminino , Fatores de Transcrição Forkhead/metabolismo , Perfilação da Expressão Gênica , Células da Granulosa/metabolismo , Regiões Promotoras Genéticas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ativação Transcricional/genética
10.
Artigo em Inglês | MEDLINE | ID: mdl-28076754

RESUMO

Forkheadbox L2 (FOXL2) is a transcription factor involved in mammalian ovarian development, especially in granulosa cell differentiation. However, this factor's function in mature chicken ovary is unclear. To explore the function of FOXL2 in chicken granulosa cells, we performed RNA-seq to compare the transcriptomes of pre-hierarchical (phGCs) and pre-ovulatory granulosa cells (poGCs) by FOXL2 overexpression. We observed that focal adhesion might be one of the key pathways activated during the differentiation of granulosa cells, and FOXL2 might be involved in follicle selection by regulating the expression of cytokines and the concentration of cyclic adenosine monophosphate (cAMP). Interestingly, we observed that FOXL2 played different roles in phGCs and poGCs, which might contribute to homeostasis in the chicken follicle by inducing differentiation of granulosa cells in pre-hierarchal follicles and preventing premature ovulation in pre-ovulatory follicles. Taken together, the results of our study establish a framework for understanding the potential functions of FOXL2 in the chicken granulosa cell.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Perfilação da Expressão Gênica , Células da Granulosa/metabolismo , Folículo Ovariano/metabolismo , Ovário/metabolismo , Animais , Células Cultivadas , Galinhas , Feminino , Imunofluorescência , Fatores de Transcrição Forkhead/genética , Células da Granulosa/citologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Folículo Ovariano/citologia , Ovário/citologia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcrição Gênica
11.
J Zhejiang Univ Sci B ; 17(8): 591-6, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27487804

RESUMO

The laying quail is a worldwide breed which exhibits high economic value. In our current study, the vasoactive intestinal peptide receptor-1 (VIPR-1) was selected as the candidate gene for identifying traits of egg production. A single nucleotide polymorphism (SNP) detection was performed in 443 individual quails, including 196 quails from the H line, 202 quails from the L line, and 45 wild quails. The SNPs were genotyped using a polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Two mutations (G373T, A313G) were detected in all the tested quail populations. The associated analysis showed that the SNP genotypes of the VIPR-1 gene were significantly linked with the egg weight of G373T and A313G in 398 quails. The quails with the genotype GG always exhibited the largest egg weight for the two mutations in the H and L lines. Linkage disequilibrium (LD) analysis indicated that G373T and A313G loci showed the weakest LD. Seven main diplotypes from the four main reconstructed haplotypes were observed, indicating a significant association of diplotypes with egg weight. Quails with the h1h2 (GGGT) diplotype always exhibited the smallest egg weight and largest egg number at 20 weeks of age. The overall results suggest that the alterations in quails may be linked with potential major loci or genes affecting reproductive traits.


Assuntos
Haplótipos , Oviparidade/genética , Polimorfismo de Nucleotídeo Único , Receptores Tipo I de Polipeptídeo Intestinal Vasoativo/genética , Animais , Genótipo , Desequilíbrio de Ligação , Codorniz
12.
Mol Cell Endocrinol ; 429: 29-40, 2016 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-27036932

RESUMO

Several studies indicate that sexual dimorphic microRNAs (miRNAs) in chicken gonads are likely to have important roles in sexual development, but a more global understanding of the roles of miRNAs in sexual differentiation is still needed. To this end, we performed miRNA expression profiling in chicken gonads at embryonic day 5.5 (E5.5). Among the sex-biased miRNAs validated by qRT-PCR, twelve male-biased and six female-biased miRNAs were consistent with the sequencing results. Bioinformatics analysis revealed that some sex-biased miRNAs were potentially involved in gonadal development. Further functional analysis found that over-expression of miR-107 directly inhibited nuclear receptor subfamily 5 group A member 1 (NR5a1), and its downstream cytochrome P450 family 19 subfamily A, polypeptide 1 (CYP19A1). However, anti-Mullerian hormone (AMH) was not directly or indirectly regulated by miR-107. Overall results indicate that miR-107 may specifically mediate avian ovary-development by post-transcriptional regulation of NR5a1 and CYP19A1 in estrogen signaling pathways.


Assuntos
Galinhas/genética , Perfilação da Expressão Gênica , Gônadas/embriologia , Gônadas/metabolismo , MicroRNAs/metabolismo , Caracteres Sexuais , Fator Esteroidogênico 1/metabolismo , Animais , Sequência de Bases , Embrião de Galinha , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Masculino , MicroRNAs/genética , Reprodutibilidade dos Testes
13.
Dongwuxue Yanjiu ; 32(4): 386-90, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21842534

RESUMO

Zebrafish (Danio rerio) Z-OTU, containing OTU and TUDOR domains, was predicted to be a member of OTU-related protease, a family of the deubiquitylating enzymes (DUBs). A previous report from our laboratory clearly describes the expression patterns of z-otu mRNA. Here, we characterized the Z-OTU protein during zebrafish oogenesis and early embryogenesis. After prokaryotic expression, the recombinant protein of the OTU domain and GST was purified and injected into rabbits to obtain the polyclonal antibody-anti-Z-OTU, which was used for immunohistochemistry in zebrafish ovaries and embryos. Interestingly, obvious differences existed between the expression patterns of z-otu mRNA and its protein during oogenesis and early embryogenesis. In stage I oocytes, z-otu mRNA was detected in cytoplasm while its protein existed in the germinal vesicle. In addition, its protein was distributed during entire oogenesis, while mRNA was not detected in oocytes at stage IV or mature oocytes. The z-otu mRNA disappeared after midblastula transition (MBT) and its protein gradually decreased after this stage. We inferred that Z-OTU protein, like other OTU-related protease with DUB activity, was required for germinal vesicle breakdown of oocytes during meiosis, germinal vesicle migration, and embryo cleavage maintenance.


Assuntos
Cisteína Endopeptidases/metabolismo , Desenvolvimento Embrionário , Oócitos/metabolismo , Oogênese , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Sequência de Aminoácidos , Animais , Cisteína Endopeptidases/química , Cisteína Endopeptidases/genética , Feminino , Masculino , Dados de Sequência Molecular , Oócitos/citologia , Transporte Proteico , Coelhos , Alinhamento de Sequência , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/química , Proteínas de Peixe-Zebra/genética
14.
Yi Chuan ; 31(9): 936-40, 2009 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-19819846

RESUMO

To investigate the expression and functions of cyclin-dependent kinase 2-associated protein 1 (cdk2ap1) screened by suppression subtractive hybridization in chicken embryo development, a pair of primers was designed to amplify the cdk2ap1 fragment by RT-PCR and subsequently the fragment obtained was cloned into the plasmid pGEM-T. Sense and antisense probes labeled with digoxigenin were generated using SP6 and T7 RNA polymerases, respectively, and used to examine cdk2ap1 expression in chicken embryos of both sexes by whole-mount in situ hybridization. In both sexes, cdk2ap1 was expressed in the head mesenchyme, rhombencephalon, optic vesicles, spinal neural tube, and forelimb of 4.0-day-old embryos and the expression in males was significantly higher than that in females. In addition, in the genital ridge and hindlimb of the 4.0-day-old chicken embryo, cdk2ap1 was obviously expressed in the males but not in females. It is supposed that cdk2ap1 may play a role in the sexual differentiation and development of gonad of chicken embryo.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Proteínas Supressoras de Tumor/fisiologia , Animais , Embrião de Galinha , Galinhas , Clonagem Molecular , Feminino , Gônadas/embriologia , Gônadas/metabolismo , Hibridização In Situ , Masculino , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA