Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Comput Med Imaging Graph ; 117: 102426, 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39288579

RESUMO

Lung cancer has the highest mortality rate among cancers. The commonly used clinical method for diagnosing lung cancer is the CT-guided percutaneous transthoracic lung biopsy (CT-PTLB), but this method requires a high level of clinical experience from doctors. In this work, an automatic path planning method for CT-PTLB is proposed to provide doctors with auxiliary advice on puncture paths. The proposed method comprises three steps: preprocessing, initial path selection, and path evaluation. During preprocessing, the chest organs required for subsequent path planning are segmented. During the initial path selection, a target point selection method for selecting biopsy samples according to biopsy sampling requirements is proposed, which includes a down-sampling algorithm suitable for different nodule shapes. Entry points are selected according to the selected target points and clinical constraints. During the path evaluation, the clinical needs of lung biopsy surgery are first quantified as path evaluation indicators and then divided according to their evaluation perspective into risk and execution indicators. Then, considering the impact of the correlation between indicators, a path scoring system based on the double spherical constraint Pareto and the importance-correlation degree of the indicators is proposed to evaluate the comprehensive performance of the planned paths. The proposed method is retrospectively tested on 6 CT images and prospectively tested on 25 CT images. The experimental results indicate that the method proposed in this work can be used to plan feasible puncture paths for different cases and can serve as an auxiliary tool for lung biopsy surgery.

2.
Am J Med Sci ; 368(4): 369-381, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38906377

RESUMO

BACKGROUND: Diabetic kidney disease (DKD; also known as diabetic nephropathy) is a typical complication of diabetes mellitus characterised by renal injury due to disturbances in glucose metabolism, in which renal tubular damage caused by chronic inflammation has been shown to be closely associated with the development of end-stage renal disease (ESRD). However, there are insufficient effective therapeutic agents to halt the progression of DKD. METHODS: In the present study, we screened differential gene expression profiles associated with DKD by mining the GEO database through differential and enrichment analyses. Furthermore, systemic in vivo and in vitro experiments were designed to explore the mechanism through which the potential therapeutic agent SB-525334 improves DKD. RESULTS: SB-525334 ameliorated DKD-induced kidney injury by regulating inflammatory cytokines (TGF-ß1, IL-6, IL-10) as well as promoting the translation of M1 (iNOS) macrophage to M2 (CD206) macrophage. In addition, SB-525334 ameliorates kidney injury caused by DKD through inhibiting inflammation through regulating the expression of key proteins in the TGF-ß1 /JNK and TGF-ß1 /Smad signaling pathways. For studies in vitro, inflammation induced by LPS in vitro was inhibited significantly after the administration of SB-525334 through down-regulating pro-inflammatory cytokines, promoting macrophage conversion from M1 to M2, and inhibiting the activation of TGF-ß1 /JNK and TGF-ß1 /Smad pathways. CONCLUSIONS: These results highlight that the target compound SB-525334 could serve as a novel potential therapeutic agent and ameliorate DKD in an inflammation-inhibiting manner.


Assuntos
Nefropatias Diabéticas , Modelos Animais de Doenças , Inflamação , Animais , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/metabolismo , Camundongos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Citocinas/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo
3.
Osteoarthritis Cartilage ; 32(10): 1245-1260, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38744373

RESUMO

OBJECTIVE: Intervertebral Disc Degeneration (IVDD) is one of the leading causes of low back pain, significantly impacting both individuals and society. This study aimed to investigate the significance of macrophage infiltration and the role of macrophage-secreted platelet-derived growth factor-BB (PDGF-BB) in IVDD progression. METHODS: To confirm the protective function of macrophage-derived PDGF-BB on nucleus pulposus cells (NPCs), we employed Lysm-Cre transgenic mice to genetically ablate PDGF-B within the myeloid cells. Immunohistochemistry was utilized to detect the expression of glycolytic enzymes and pyroptosis-related proteins during the process of IVDD. Western blot, RT-PCR, ELISA and immunofluorescence were used to detect the protective effect of recombinant PDGF-BB on NPCs. RESULTS: Macrophage-derived PDGF-BB deficiency resulted in the loss of NPCs and the increased ossification of cartilage endplates during lumbar disc degeneration. Also, PDGF-BB deficiency triggered the inhibition of glycolytic enzymes' expression and the activation of pathways related to pyroptosis in the nucleus pulposus. Mechanistically, our results suggest that PDGF-BB predominantly conveys its protective influence on NPCs through the PDGF receptor- beta (PDGFR-ß)/ thioredoxin-interacting protein pathway. CONCLUSIONS: The absence of PDGF-BB originating from macrophages expedites the advancement of IVDD, whereas the application of PDGF-BB treatment holds the potential for retarding intervertebral disc degeneration in the human body.


Assuntos
Becaplermina , Glicólise , Degeneração do Disco Intervertebral , Macrófagos , Camundongos Transgênicos , Núcleo Pulposo , Piroptose , Receptor beta de Fator de Crescimento Derivado de Plaquetas , Animais , Núcleo Pulposo/metabolismo , Núcleo Pulposo/patologia , Piroptose/efeitos dos fármacos , Piroptose/fisiologia , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/patologia , Becaplermina/farmacologia , Macrófagos/metabolismo , Camundongos , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Transdução de Sinais , Proteínas de Transporte/metabolismo
4.
Int Immunopharmacol ; 125(Pt B): 111169, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37948862

RESUMO

BACKGROUND: Osteoarthritis (OA) is a prevalent degenerative joint disease [1]. It has come to light that AZD8330 can suppress the generation of proinflammatory factors and deter the inflammatory response [2]. Given that inflammation is a primary causative factor in OA, it is posited that AZD8330 might exhibit superior efficacy in OA management. METHODS: In this study, we investigated the potential of intraperitoneal injection of AZD8330 to retard the progression of osteoarthritis in a murine model with surgically induced medial meniscus destruction (DMM). Concurrently, we employed ATDC5 cartilage cells to dissect the mechanism through which AZD8330 inhibits the TNF-α-induced NF-κB signaling pathway via modulation of RIP1. The findings revealed that AZD8330 mitigated cartilage degradation and the inflammatory response, leading to a substantial reduction in OARSI scores among DMM mice treated with AZD8330. Mechanistically, AZD8330 functioned as a suppressor of the TNF-α-induced NF-κB/p65 signaling pathway by facilitating the phosphorylation activation of cIAP1-mediated RIP1. The combination of data from both in vivo and in vitro experiments supports the conclusion that AZD8330 can attenuate chondrocyte degradation, thereby alleviating OA, by regulating the NF-κB/P65 signaling pathway through modulation of RIP1 activity. Consequently, the utilization of AZD8330 may hold potential in the prophylaxis of osteoarthritis. RESULTS: Our investigation delineates the role of AZD8330 in the regulation of inflammation in the context of OA treatment. Furthermore, we have unveiled that the inhibitory impact of AZD8330 on OA may hinge upon the activation of cIAP1, which in turn downregulates RIP1, thereby restraining the NF-κB/P65 signaling pathway. This study lends credence to the notion that AZD8330 may be a promising contender for osteoarthritis therapy. CONCLUSIONS: Our study provides compelling evidence attesting to the capacity of AZD8330 in managing inflammation within the realm of OA treatment. Likewise, our study has elucidated that the attenuation of OA by AZD8330 relies on the activation of cIAP1 to inhibit RIP1, consequently suppressing the NF-κB signaling pathway. On the strength of our present study, we may have identified a viable drug candidate for OA treatment.


Assuntos
NF-kappa B , Osteoartrite , Camundongos , Animais , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Osteoartrite/induzido quimicamente , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Regulação para Cima , Transdução de Sinais , Inflamação/tratamento farmacológico , Condrócitos/metabolismo , Meniscos Tibiais , Necrose/metabolismo , Interleucina-1beta/metabolismo
5.
Drug Des Devel Ther ; 17: 2383-2399, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37605762

RESUMO

Background: Osteoarthritis (OA), a common chronic joint disease, is characterized by cartilage degeneration and subchondral bone reconstruction. NF-κB signaling pathway-activated inflammation and NLRP3-induced pyroptosis play essential roles in the development of OA. In this study, we examine whether paroxetine can inhibit pyroptosis and reduce osteoclast formation, thereby delaying the destruction of knee joints. Methods: We employed high-density cultures, along with quantitative polymerase chain reactions and Western blotting techniques, to investigate the effects of paroxetine on extracellular matrix synthesis and degradation. The expression levels of NF-κB and pyroptosis-related signaling pathway proteins were examined by Western blotting and immunofluorescence. Furthermore, the impact of paroxetine on RANKL-induced osteoclast formation was evaluated through TRAP staining and F-actin ring fluorescence detection. To investigate the role of paroxetine in vivo, we constructed a mouse model with destabilization of the medial meniscus (DMM) surgery. Safranin O-Fast Green staining, Hematoxylin-Eosin staining, and immunohistochemistry were conducted to observe the extent of knee joint cartilage deformation. In addition, TRAP staining was used to observe the formation of osteoclasts in the subchondral bone. Results: In the in vitro experiments with ATDC5, paroxetine treatment attenuated IL-1ß-induced activation of the pyroptosis-related pathway and suppressed extracellular matrix catabolism by inhibiting the NF-kB signaling pathway. In addition, paroxetine treatment decreased the expression of RANKL-induced osteoclast marker genes and reduced osteoclast formation. In animal experiments conducted in vivo, mice treated with paroxetine exhibited thicker knee cartilage with a smoother surface compared to the DMM group. Additionally, the formation of osteoclasts in the subchondral bone was reduced in the paroxetine-treated mice. Further analysis revealed that paroxetine treatment played a role in preserving the balance of the extracellular matrix and delaying knee joint degeneration. Conclusion: Paroxetine can inhibit pyroptosis and reduce osteoclast formation via inhibiting the NF-κB signaling pathway, suggesting that it may have therapeutic effects in patients with OA.


Assuntos
NF-kappa B , Osteoartrite do Joelho , Animais , Camundongos , Condrócitos , Osteoclastos , Paroxetina/farmacologia , Piroptose , Transdução de Sinais
6.
Bioorg Chem ; 132: 106321, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36642020

RESUMO

Osteoarthritis (OA), a degenerative disease affecting the joint, is characterized by degradation of the joint edge, cartilage injury, and subchondral bone hyperplasia. Treatment of early subchondral bone loss in OA can inhibit subsequent articular degeneration and improve the prognosis of OA. PD0325901, a specific inhibitor of ERK, is widely used in oncology and has potential as a therapeutic agent for osteoarthritis In this study, we investigated the biological function of PD0325901 in bone marrow monocytes/macrophages (BMMs)treated with RANKL and found that it inhibited osteoclast differentiation in vitro in a time- and dose-dependent manner. PD0325901 restrained the expression of osteoclast marker genes, such as c-Fos and NFATc1 induced by RANKL. We tested the biological effects of PD035901 on ATDC5 cells stimulated by IL-1ß and found that it had protective effects on ATDC5 cells. In animal studies, we used a destabilization of the medial meniscus (DMM) model and injected 5 mg/kg or 10 mg/kg of PD0325901 compound into each experimental group of mice. We found that PD0325901 significantly reduced osteochondral pathological changes in post-OA subchondral bone destruction.Finally, we found that PD0325901 down-regulated the pyroptosis level in chondrocytes to rescue cartilage degeneration. Therefore, PD0325901 is expected to be a new generation alternative therapy for OA.


Assuntos
NF-kappa B , Osteoartrite , Animais , Camundongos , NF-kappa B/metabolismo , Osteoclastos , Transdução de Sinais , Inflamação/metabolismo , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Cartilagem/metabolismo , Cartilagem/patologia , Condrócitos
7.
Inflammopharmacology ; 31(1): 369-384, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36401729

RESUMO

OBJECTIVES: As one of the major causes of low back pain, intervertebral disc degeneration (IDD) has caused a huge problem for humans. Increasing evidence indicates that NLRP3 inflammasome-mediated pyroptosis of NP cells displays an important role in the progression of IDD. Maltol (MA) is a flavoring agent extracted from red ginseng. Due to its anti-inflammatory and antioxidant effects, MA has been widely considered by researchers. Therefore, we hypothesized that MA may be a potential IVD protective agent by regulating NP cells and their surrounding microenvironment. METHODS: In vitro, qRT-PCR, and Western blot were used to explore the effect of MA on the transcription and protein expression of the anabolic protein (ADAMTS5, MMP3, MMP9) catabolic protein (Aggrecan), and pro-inflammatory factor (iNOS COX-2). Next, the effects of MA on PI3K/AKT/NF-κB pathway and pyroptosis pathway were analyzed by Western blot and immunofluorescence. Molecular docking was used to investigate the relationship between PI3K and MA. Moreover, ELISA was also used to detect the effects of MA on inflammatory factors (TNF-α, PGE2, IL-1ß, and IL-18). In vivo, the effects of MA on the vertebral structure of IDD mice were studied by HE and SO staining and the effects of MA on ECM and PI3K/AKT/NF-κB and pyroptosis pathway of IDD mice were studied by immunohistochemical staining. RESULTS: MA can ameliorate intervertebral disc degeneration in vivo and in vitro. Specifically, the molecular docking results showed that the binding degree of MA and PI3K was significant. Second, in vitro studies showed that MA inhibited the degradation of ECM and inflammatory response by inhibiting the PI3K/AKT/NF-κB pathway and the pyroptosis mediated by NLRP3 inflammasome, which increased the expression of anabolic proteins, decreased the expression of catabolic proteins, and decreased the secretion of inflammatory mediators such as IL-18 and IL-1ß. In addition, according to the study results of the mouse lumbar instability model, MA also improved the tissue disorder and degradation of the intervertebral disc, reduced the loss of proteoglycan and glycosaminoglycan, and inhibited intervertebral disc inflammation, indicating that MA has a protective effect on the intervertebral disc to intervertebral disc in mice. CONCLUSIONS: Our results suggest that MA slowed IDD development through the PI3K/AKT/NF-κB signaling pathway and NLRP3 inflammasome-mediated pyroptosis, indicating that MA appeared to be a viable medication for IDD treatment.


Assuntos
Degeneração do Disco Intervertebral , Núcleo Pulposo , Humanos , Camundongos , Animais , NF-kappa B/metabolismo , Degeneração do Disco Intervertebral/tratamento farmacológico , Degeneração do Disco Intervertebral/metabolismo , Inflamassomos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Interleucina-18/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Piroptose , Simulação de Acoplamento Molecular , Núcleo Pulposo/metabolismo
8.
Int Immunopharmacol ; 111: 109085, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35952515

RESUMO

As a degenerative disease, the pathogenesis and treatment of osteoarthritis (OA) are still being studied. The prevailing view is that articular cartilage dysfunction plays an essential role in the development of osteoarthritis. Similarly, dynamic bone remodeling dramatically influences the development of osteoarthritis. The inflammatory response is caused by the overexpression of inflammatory factors, among which tumor necrosis factor-α is one of the main causes of OA, and its sources include the secretion of chondrocytes themselves and osteoclast secretion of subchondral bone. Moreover, TNF-α-induced activation of RIP1, RIP3, and MLKL has been shown to play an important role in cell necroptosis and inflammatory responses. In vitro, AZ-628 alleviates chondrocyte inflammation and necroptosis by inhibiting the NF-κB signaling pathway and RIP3 activation instead of RIP1 activation. AZ-628 also reduces osteoclast activity, proliferation and differentiation, and release of inflammatory substances by inhibiting autophagy, MAPK, and NF-κB pathways. Similarly, the in vivo study demonstrated that AZ-628 could inhibit chondrocyte breakdown and lower osteoclast formation and bone resorption, thereby slowing down subchondral bone changes induced by dynamic bone remodeling and reversing the progression of osteoarthritis in mice. The results of this study indicate that AZ-628 could be used to treat OA byinhibiting chondrocyte necroptosis and regulating osteoclast formation.


Assuntos
Condrócitos , Osteoartrite , Animais , Condrócitos/metabolismo , Camundongos , NF-kappa B/metabolismo , Necroptose , Osteoartrite/metabolismo , Osteoclastos/metabolismo , Quinazolinas , Fator de Necrose Tumoral alfa/metabolismo
9.
Biochem Pharmacol ; 205: 115155, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35820500

RESUMO

Osteoarthritis (OA) is a degenerative disease caused by the progressive destruction of cartilage and subchondral bone [1]. Studies have shown that by inhibiting the degradation of cartilage cells and the loss of subchondral bone, OA can be prevented and treated. Neratinib, as a small molecule compound with anti-inflammatory and anti-tumor properties, is a very effective inhibitor of IL-1ß-induced chondrocyte inflammation and anabolic metabolism. By investigating the effect of neratinib in ATDC5 chondrocytes, the study finds that neratinib reduces inflammation by inhibiting the MAPK and NF-κB signaling pathways, and at the same time reduces pyrolysis (indicated by the results of reverse transcription quantitative PCR and western blotting). For anabolic metabolism, after high-density cell culture, IL-1ß-induced catalytic changes and degradation of the extracellular matrix were evaluated by toluidine blue staining. Since osteoclasts are key participants in the process of subchondral bone remodeling in OA, we also studied the effect of neratinib on the maturation of osteoclasts. The results showed that neratinib also acts as an anti-osteoclast agent in vitro. By inhibiting the NF-κB and MAPK pathways, it reduces the expression of osteoclast-related genes, thereby inhibiting RANKL-induced osteoclastogenesis. The results of in vivo animal experiments supported the conclusions from the experiments in vitro. Neratinib inhibited both the destruction of medial meniscus induced cartilage degradation and osteoclast formation, which proves that neratinib has a dual effect, protecting cartilage and inhibiting osteoclast formation. These results indicate that neratinib can be a brand-new latent strategy for the treatment of OA.


Assuntos
NF-kappa B , Osteoartrite , Animais , NF-kappa B/metabolismo , Cloreto de Tolônio/metabolismo , Cloreto de Tolônio/farmacologia , Cloreto de Tolônio/uso terapêutico , Osteoartrite/patologia , Condrócitos , Cartilagem/metabolismo , Interleucina-1beta/metabolismo , Transdução de Sinais , Inflamação/metabolismo , Anti-Inflamatórios/farmacologia
10.
Ultrason Sonochem ; 83: 105945, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35149379

RESUMO

In this study, the three-dimensional network system formed by rice bran wax (RBW) was used as the internal structure, and the external structure formed by soybean protein isolate (SPI) and phosphatidylserine (PS) was added on the basis of the internal structure to prepare walnut oil oleogel (SPI-PS-WOG). Ultrasonic treatment was applied to the mixed solution to make SPI-PS-WOG, on the basis, the effects of ultrasonic treatment on SPI-PS-WOG were investigated. The results showed that both ß and ß' crystalline forms were present in all SPI-PS-WOG samples. When the ultrasonic power was 450 W, the first weight loss peak in the thermogravimetric (TGA) curve appeared at 326 °C, which was shifted to the right compared to the peak that occurred when the ultrasonic power was 0 W, indicating that the thermal stability of the SPI-PS-WOG was improved by the ultrasonic treatment. Moreover, when the ultrasonic power was 450 W, the oil holding capacity (OHC) reached 95.3 %, which was the best compared with other groups. Both confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM) showed that the ultrasonic treatment of appropriate power succeeded in making the SPI-PS-WOG samples more evenly dispersed in the internal structure and denser in the external structure. In terms of oxidative stability, it was found that the peroxide value of SPI-PS-WOG remained at 9.8 mmol/kg oil for 50 days under 450 W ultrasonic power treatment, which was significantly improved compared with liquid walnut oil (WO). These results provide a new idea for the preparation of oleogels, and also lay a theoretical foundation for the application of ultrasonic treatment in oleogels.


Assuntos
Fosfatidilserinas , Óleos de Plantas , Ultrassom , Juglans/química , Compostos Orgânicos/química , Compostos Orgânicos/efeitos da radiação , Oxirredução/efeitos da radiação , Fosfatidilserinas/química , Óleos de Plantas/química , Proteínas de Soja/química
11.
Am J Med Sci ; 361(6): 776-785, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33667434

RESUMO

BACKGROUND: We aimed to investigate the mechanisms of renal fibrosis and explore the effect of CD4+CD25+Foxp3+ regulatory T cells (Treg) on renal fibrosis after the obstruction was removed. METHODS: Fifty-five C57BL/6 mice were randomly divided into three groups: the unilateral ureteral obstruction (UUO) group, the relief for unilateral ureteral obstruction (RUUO) group, and the RUUO+Treg group. Renal fibrosis indexes of RUUO mice were evaluated using hematoxylin and eosin (HE) and, Masson staining and immunohistochemistry after CD4+CD25+Treg cells were injected into the tail vein at the moment of recanalization. We detected the levels of Treg, M1, and M2 markers by flow cytometry, and the levels of transforming growth factor (TGF)-ß1, interleukin (IL)-1ß, IL-6 and IL-10 using ELISA. RESULTS: The tubular necrosis score, AO value of α-SMA (smooth muscle actin), and collagen area on the 3rd and 14th days post RUUO were up-regulated compared with the 7th day post RUUO (P<0.05). After injection of Treg via tail vein, the tubular necrosis score, AO value of α-SMA, TGF-ß1 level, and collagen area in the RUUO+Treg group on the 14th day were down-regulated compared with the RUUO group (P<0.05). Moreover, Treg could transform M1 macrophages into M2 macrophages, manifesting as up-regulated expression of CD206 compared with the RUUO group (P<0.05). Treg could also down-regulate the secretion of IL-6 and IL-1ß while up-regulating the secretion of IL-10 in vitro compared with the M1 group (P<0.05). CONCLUSIONS: The kidney could deteriorate into a state of injury and fibrosis after the obstruction was removed, and Treg could effectively protect the kidney function.


Assuntos
Rim/imunologia , Rim/patologia , Macrófagos/imunologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/transplante , Animais , Células Cultivadas , Técnicas de Cocultura , Fibrose/imunologia , Fibrose/patologia , Fibrose/terapia , Mediadores da Inflamação/antagonistas & inibidores , Mediadores da Inflamação/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
12.
Front Pharmacol ; 12: 799130, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35095507

RESUMO

Platelet-derived growth factor-BB (PDGF-BB) is a cytokine involved in tissue repair and tumor progression. It has been found to have expression differences between normal and degenerative intervertebral discs. However, it is not clear whether PDGF-BB has a protective effect on intervertebral disc degeneration (IDD). In this experiment, we treated nucleus pulposus cells (NPCs) with IL-1ß to simulate an inflammatory environment and found that the extracellular matrix (ECM) anabolic function of NPCs in an inflammatory state was inhibited. Moreover, the induction of IL-1ß also enhanced the expression of NLRP3 and the cleavage of caspase-1 and IL-1ß, which activated the pyroptosis of NPCs. In this study, we studied the effect of PDGF-BB on IL-1ß-treated NPCs and found that PDGF-BB not only significantly promotes the ECM anabolism of NPCs, but also inhibits the occurrence of pyroptosis and the production of pyroptosis products of NPCs. Consistent with this, when we used imatinib to block the PDGF-BB receptor, the above-mentioned protective effect disappeared. In addition, we found that PDGF-BB can also promote the ECM anabolism of NPCs by regulating the ERK, JNK, PI3K/AKT signaling pathways, but not the P38 signaling pathway. In vivo studies, mice that blocked PDGF-BB receptors showed more severe histological manifestations of intervertebral disc degeneration. In summary, our results indicate that PDGF-BB participates in inhibiting the occurrence and development of IDD by inhibiting pyroptosis and regulating the MAPK signaling pathway.

13.
Neuropharmacology ; 164: 107899, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31809762

RESUMO

GPR40 was utilized as the drug target to the treatment of diabetes, but the function and mechanisms ameliorating the Alzheimer's disease (AD) remain unknown. In present study, the typical APP/PS1 mouse model was applied to explore the function and mechanism of GPR40 in AD. GPR40 agonist GW9508 and antagonist GW1100 were respectively given by i.c.v. injection to activate/inhibit the GPR40 in the brain of APP/PS1 mice which illustrated the function and mechanism of GPR40 in ameliorating AD symptoms. Morris water maze test, step-through test, Y-maze spontaneous alternation test, open field test and new object recognition test were used to test the cognitive function and memory ability of mice, while molecular biology experiments such as Western blot, immunofluorescence, JC-1 were used to detect the corresponding changes of signal pathways. The results revealed that treatment with GW9508 could significantly ameliorate cognitive deficits of APP/PS1 mice, upregulate the expression levels of cAMP, p-CREB and neurotrophic factors in vivo, while GW9508 also ameliorate Aß1-42-induced neuron damage and downregulate the expression levels of pathological protein such as p-JNK, JNK and apoptosis-related proteins such as IL-6, IL-1ß, TNF-α and caspase-3 in vitro. Meanwhile, high-content screening also showed that GW9508 promoted the cellular differentiation of SH-SY5Y cells, while GW1100 reversed the effects of GW9508. These results suggested that GPR40 was an underlying therapeutic target for the treatment of AD and GPR40 agonist could be explored as the emerging AD therapeutic drug.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Transtornos Cognitivos/tratamento farmacológico , Metilaminas/uso terapêutico , Propionatos/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/toxicidade , Precursor de Proteína beta-Amiloide/genética , Animais , Proteínas Reguladoras de Apoptose/biossíntese , Proteínas Reguladoras de Apoptose/genética , Benzoatos/farmacologia , Transtornos Cognitivos/psicologia , AMP Cíclico , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Regulação para Baixo , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Metilaminas/antagonistas & inibidores , Camundongos , Neurônios/efeitos dos fármacos , Fragmentos de Peptídeos/toxicidade , Presenilina-1/genética , Propionatos/antagonistas & inibidores , Pirimidinas/farmacologia , Reconhecimento Psicológico/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA