Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 71(43): 16148-16159, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37871265

RESUMO

Six new sesquiterpenoids (1-6), a pair of enantiomers (7a and 7b), and six known ones (8-13) were isolated from the fruits of Alpinia oxyphylla. The structures of the new compounds were elucidated by extensive spectroscopic data and ECD calculations. The stereochemistry of 7a and 7b was reported for the first time. All compounds showed significant GLP-1 stimulation in NCI-H716 cells with promoting ratios ranging from 90.4 to 668.9% at 50 µM. Mechanism study indicated that compound 6 stimulated GLP-1 secretion mainly by regulating the transcription and the shearing process of proglucagon, while compound 13 exerted its effects through up-regulating prkaca levels. Interestingly, the GLP-1 stimulative effects of 6 and 13 were both closely related with Ca2+/CaMKII and PKA pathways but irrelevant to TGR5 and GPR119 receptors. Moreover, most compounds exhibited inhibitory activity against α-glucosidase and PTP1B at concentrations of 100 and 200 µM, while showing no activity against GPa. Compounds 3, 9, 11, and 13 could suppress α-glucosidase with IC50 values of 190.0, 204.0, 181.8, and 159.6 µM, equivalent to acarbose (IC50 = 212.0 µM). This study manifests that A. oxyphylla contains diverse sesquiterpenoids with multiple activities.


Assuntos
Alpinia , Sesquiterpenos , Alpinia/química , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Peptídeo 1 Semelhante ao Glucagon , alfa-Glucosidases , Fatores de Transcrição , Sesquiterpenos/farmacologia , Sesquiterpenos/química
2.
Toxicon ; 200: 48-54, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34237341

RESUMO

Antibiotic-resistant bacteria are a major threat to global public health, and there is an urgent need to find effective, antimicrobial treatments that can be well tolerated by humans. Hornet venom is known to have antimicrobial properties, and contains peptides with similarity to known antimicrobial eptides (AMPs), mastoparans. We identified multiple new AMPs from the venom glands of Vespa ducalis (U-VVTX-Vm1a, U-VVTX-Vm1b, and U-VVTX-Vm1c), Vespa mandarinia (U-VVTX-Vm1d), and Vespa affinis (U-VVTX-Vm1e). All of these AMPs have highly similar sequences and are related to the toxic peptide, mastoparan. Our newly identified AMPs have α-helical structures, are amphiphilic, and have antimicrobial properties. Both U-VVTX-Vm1b and U-VVTX-Vm1e killed bacteria, Staphylococcus aureus ATCC25923 and Escherichia coli ATCC25922, at the concentrations of 16 µg/mL and 32 µg/mL, respectively. None of the five AMPs exhibited strong toxicity as measured via their hemolytic activity on red blood cells. U-VVTX-Vm1b was able to increase the permeability of E. coli ATCC25922 and degrade its genomic DNA. These results are promising, demonstrate the value of investigating hornet venom as an antimicrobial treatment, and add to the growing arsenal of such naturally derived treatments.


Assuntos
Anti-Infecciosos , Vespas , Sequência de Aminoácidos , Animais , Antibacterianos/farmacologia , Escherichia coli , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Peptídeos/farmacologia , Venenos de Vespas/farmacologia
3.
Am J Physiol Cell Physiol ; 311(5): C831-C836, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27653985

RESUMO

Adipose tissue plays a critical role in metabolic diseases and the maintenance of energy homeostasis. RACK1 has been identified as an adaptor protein involved in multiple intracellular signal transduction pathways and diseases. However, whether it regulates adipogenesis remains unknown. Here, we reported that RACK1 is expressed in 3T3-L1 cells and murine white adipose tissue and that RACK1 knockdown by shRNA profoundly suppressed adipogenesis by reducing the expression of PPAR-γ and C/EBP-ß. Depletion of RACK1 increased ß-catenin protein levels and activated Wnt signaling. Furthermore, RACK1 knockdown also suppressed the PI3K-Akt-mTOR-S6K signaling pathway by reducing the PI3K p85α, pAkt T473, and S6K p70. Taken together, these results demonstrate that RACK1 is a novel factor required for adipocyte differentiation by emerging Wnt/ß-catenin signaling and PI3K-Akt-mTOR-S6K signaling pathway(s).


Assuntos
Adipogenia/fisiologia , Neuropeptídeos/metabolismo , Células 3T3-L1 , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Animais , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Diferenciação Celular/fisiologia , Linhagem Celular , Camundongos , PPAR gama/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno/metabolismo , Receptores de Quinase C Ativada , Serina-Treonina Quinases TOR/metabolismo , Via de Sinalização Wnt/fisiologia , beta Catenina/metabolismo
4.
Cell Cycle ; 15(13): 1733-41, 2016 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-27152871

RESUMO

AS160 (TBC1D4) has been implicated in multiple biological processes. However, the role and the mechanism of action of AS160 in the regulation of cell proliferation remain unclear. In this study, we demonstrated that AS160 knockdown led to blunted cell proliferation in multiple cell types, including fibroblasts and cancer cells. The results of cell cycle analysis showed that these cells were arrested in the G1 phase. Intriguingly, this inhibition of cell proliferation and the cell cycle arrest caused by AS160 depletion were glucose independent. Moreover, AS160 silencing led to a marked upregulation of the expression of the cyclin-dependent kinase inhibitor p21. Furthermore, whereas AS160 overexpression resulted in p21 downregulation and rescued the arrested cell cycle in AS160-depeleted cells, p21 silencing rescued the inhibited cell cycle and proliferation in the cells. Thus, our results demonstrated that AS160 regulates glucose-independent eukaryotic cell proliferation through p21-dependent control of the cell cycle, and thereby revealed a molecular mechanism of AS160 modulation of cell cycle and proliferation that is of general physiological significance.


Assuntos
Ciclo Celular , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Células Eucarióticas/citologia , Proteínas Ativadoras de GTPase/metabolismo , Animais , Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Células Eucarióticas/efeitos dos fármacos , Células Eucarióticas/metabolismo , Fase G1/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Inativação Gênica/efeitos dos fármacos , Glucose/farmacologia , Humanos , Ácido Láctico/farmacologia , Camundongos , RNA Interferente Pequeno/metabolismo , Regulação para Cima/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA