Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(9)2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37175599

RESUMO

The Na+-activated Na+ channel (Nax) and salt-inducible kinase (SIK) are stimulated by increases in local Na+ concentration, affecting (Na+ + K+)-ATPase activity. To test the hypothesis that the triad Nax/SIK/(Na+ + K+)-ATPase contributes to kidney injury and salt-sensitive hypertension (HTN), uninephrectomized male Wistar rats (200 g; n = 20) were randomly divided into 4 groups based on a salt diet (normal salt diet; NSD-0.5% NaCl-or high-salt diet; HSD-4% NaCl) and subcutaneous administration of saline (0.9% NaCl) or deoxycorticosterone acetate (DOCA, 8 mg/kg), as follows: Control (CTRL), CTRL-Salt, DOCA, and DOCA-Salt, respectively. After 28 days, the following were measured: kidney function, blood pressure, (Na+ + K+)-ATPase and SIK1 kidney activities, and Nax and SIK1 renal expression levels. SIK isoforms in kidneys of CTRL rats were present in the glomerulus and tubular epithelia; they were not altered by HSD and/or HTN. CTRL-Salt rats remained normotensive but presented slight kidney function decay. HSD rats displayed augmentation of the Nax/SIK/(Na+ + K+)-ATPase pathway. HTN, kidney injury, and kidney function decay were present in all DOCA rats; these were aggravated by HSD. DOCA rats presented unaltered (Na+ + K+)-ATPase activity, diminished total SIK activity, and augmented SIK1 and Nax content in the kidney cortex. DOCA-Salt rats expressed SIK1 activity and downregulation in (Na+ + K+)-ATPase activity in the kidney cortex despite augmented Nax content. The data of this study indicate that the (Na+ + K+)-ATPase activity response to SIK is attenuated in rats under HSD, independent of HTN, as a mechanism contributing to kidney injury and salt-sensitive HTN.


Assuntos
Acetato de Desoxicorticosterona , Hipertensão , Ratos , Masculino , Animais , Cloreto de Sódio/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Ratos Wistar , Hipertensão/metabolismo , Sódio/metabolismo , Cloreto de Sódio na Dieta/efeitos adversos , Cloreto de Sódio na Dieta/metabolismo , Pressão Sanguínea , Rim/metabolismo , Íons/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo
2.
Biochim Biophys Acta Mol Basis Dis ; 1864(1): 102-114, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28987762

RESUMO

Renal ischemia-reperfusion injury (IRI) is a major cause of acute renal failure. Doxycycline (Dc) belongs to the tetracycline-class of antibiotics with demonstrated beneficial molecular effects in the brain and heart, mainly through matrix metalloproteinases inhibition (MMP). However, Dc protection of renal function has not been demonstrated. We determined whether low doses of Dc would prevent decreases in glomerular filtration rate (GFR) and maintain tubular Na+ handling in Wistar rats subjected to kidney I/R. Male Wistar rats underwent bilateral kidney ischemia for 30min followed by 24h reperfusion (I/R). Doxycycline (1, 3, and 10mg/kg, i.p.) was administered 2h before surgery. Untreated I/R rats showed a 250% increase in urine volume and proteinuria, a 60% reduction in GFR, accumulation of urea-nitrogen in the blood, and a 60% decrease in the fractional Na+ excretion due to unbalanced Na+ transporter activity. Treatment with Dc 3mg/kg maintained control levels of urine volume, proteinuria, GFR, blood urea-nitrogen, fractional Na+ excretion, and equilibrated Na+ transporter activities. The Dc protection effects on renal function were associated with kidney structure preservation and prevention of TGFß and fibronectin deposition. In vitro, total MMP activity was augmented in I/R and inhibited by 25 and 50µM Dc. In vivo, I/R augmented MMP-2 and -9 protein content without changing their activities. Doxycycline treatment downregulated total MMP activity and MMP-2 and -9 protein content. Our results suggest that treatment with low dose Dc protects from IRI, thereby preserving kidney function.


Assuntos
Injúria Renal Aguda/patologia , Citoproteção/efeitos dos fármacos , Doxiciclina/farmacologia , Rim/efeitos dos fármacos , Traumatismo por Reperfusão/patologia , Injúria Renal Aguda/fisiopatologia , Animais , Relação Dose-Resposta a Droga , Taxa de Filtração Glomerular/efeitos dos fármacos , Rim/irrigação sanguínea , Rim/patologia , Rim/fisiologia , Masculino , Ratos , Ratos Wistar , Traumatismo por Reperfusão/fisiopatologia
3.
Cell Transplant ; 23(2): 207-20, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23211430

RESUMO

Tissue damage by ischemia/reperfusion (I/R) results from a temporary cessation of blood flow followed by the restoration of circulation. The injury depresses mitochondrial respiration, increases the production of reactive oxygen species (ROS), decreases the mitochondrial transmembrane potential, and stimulates invasion by inflammatory cells. The primary objective of this work was to address the potential use of bone marrow stem cells (BMSCs) to preserve and restore mitochondrial function in the kidney after I/R. Mitochondria from renal proximal tubule cells were isolated by differential centrifugation from rat kidneys subjected to I/R (clamping of renal arteries followed by release of circulation after 30 min), without or with subcapsular administration of BMSCs. Respiration starting from mitochondrial complex II was strongly affected following I/R. However, when BMSCs were injected before ischemia or together with reperfusion, normal electron fluxes, electrochemical gradient for protons, and ATP synthesis were almost completely preserved, and mitochondrial ROS formation occurred at a low rate. In homogenates from cultured renal cells transiently treated with antimycin A, the coculture with BMSCs induced a remarkable increase in protein S-nitrosylation that was similar to that found in mitochondria isolated from I/R rats, evidence that BMSCs protected against both superoxide anion and peroxynitrite. Labeled BMSCs migrated to damaged tubules, suggesting that the injury functions as a signal to attract and host the injected BMSCs. Structural correlates of BMSC injection in kidney tissue included stimulus of tubule cell proliferation, inhibition of apoptosis, and decreased inflammatory response. Histopathological analysis demonstrated a score of complete preservation of tubular structures by BMSCs, associated with normal plasma creatinine and urinary osmolality. These key findings shed light on the mechanisms that explain, at the mitochondrial level, how stem cells prevent damage by I/R. The action of BMSCs on mitochondrial functions raises the possibility that autologous BMSCs may help prevent I/R injuries associated with transplantation and acute renal diseases.


Assuntos
Trifosfato de Adenosina/metabolismo , Rim/metabolismo , Mitocôndrias/metabolismo , Animais , Masculino , Potencial da Membrana Mitocondrial/fisiologia , Estresse Oxidativo/fisiologia , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Traumatismo por Reperfusão/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA