Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 7(19): 16391-16401, 2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35601309

RESUMO

According to the great potential of zero-valent iron nanoparticle applications in the environmental, medical, chemical, packaging and many other industries, there is still a need to tailor their production methods. This study reports the production of a hybrid nanostructure based on iron nanoparticles (INPs) produced in/on montmorillonite (MMT) nanoclays as an oxygen scavenger and barrier additive in polymeric packaging materials of oxygen-sensitive products. INPs and MMT were demonstrated to have effective mutual interactions in which the MMT host played a chemophysical trapping role for iron particles, causing smaller particles around 10 nm with 6.2 g/m2 higher specific surface area by limiting particle growth and agglomeration. In return, the embedding of primary iron cations in/on clays and growth of these particles during the reduction reaction pushed the clay layers out and helped further clay intercalation-exfoliation. Effective study of solvent and primary cation (Fe2+/Fe3+) types showed different preferences in interacting with natural and alkylammonium-modified MMT, resulting in the different site selection. Fe2+ cations preferred to migrate to the interlayer space, whereas Fe3+ cations tended to bond to the clay surface. The obtained results in this study suggest tailoring the ultimate oxygen scavenging capacity, shelf life, and migration properties of a hybrid nanoparticle according to the application requirements.

2.
Polymers (Basel) ; 12(7)2020 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-32664324

RESUMO

Two winery residues, namely vine shoots (ViSh) and wine pomace (WiPo), were up-cycled as fillers in PHBV-based biocomposites. Answering a biorefinery approach, the impact of a preliminary polyphenols extraction step using an acetone/water mixture on the reinforcing effect of fillers was assessed. Biocomposites (filler content up to 20 wt%) were prepared by melt-mixing and compared in terms of final performance (thermal, mechanical and barrier). It was shown that the reinforcing effect was slightly better in the case of vine shoots, while it was not significantly affected by the pre-treatment, demonstrating that these two winery residues could be perfectly used as fillers in composite materials even after an extraction process to maximize their potential of valorization.

3.
Nanomaterials (Basel) ; 9(9)2019 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-31450786

RESUMO

Iron particles of sizes between 6 and 20 nm forming aggregates of 57 ± 17 nm were synthesized by chemical reduction of iron precursors on the surface of montmorillonite (MMT). This active MMT-Fe powder was then uniformly distributed in a linear low-density polyethylene (LLDPE) matrix by extrusion at atmospheric conditions, as confirmed by wide-angle X-ray scattering (WAXS), which also detected a partial exfoliation of the nanoclays. Thermogravimetric analysis (TGA) did not detect any significant modification of the degradation temperature between nanocomposites and active nanocomposites. 57Fe Mössbauer spectroscopy evidenced the formation of a majority of iron boride in MMT-Fe as well as in the active film containing it. The LLDPE.Fu15.MMT-Fe3.75 and LLDPE.Fu15.MMT-Fe6.25 films had oxygen-scavenging capacities of 0.031 ± 0.002 and 0.055 ± 0.009 g(O2)/g(Fe), respectively, while the neat powder had an adsorption capacity of 0.122 g(O2)/g(Fe). This result confirms that the fresh film samples were partially oxidized shortly after thermomechanical processing (60% of oxidized species according to Mössbauer spectroscopy). No significant difference in oxygen permeability was observed when MMT-Fe was added. This was related to the relatively small film surface used for measuring the permeability. The reaction-diffusion model proposed here was able to reproduce the observed data of O2 adsorption in an active nanocomposite, which validated the O2 adsorption model previously developed for dried MMT-Fe powder.

4.
Polymers (Basel) ; 11(2)2019 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-30960185

RESUMO

Materials that are both biodegradable and bio-sourced are becoming serious candidates for substituting traditional petro-sourced plastics that accumulate in natural systems. New biocomposites have been produced by melt extrusion, using bacterial polyester (poly(3-hydroxybutyrate-co-3-hydroxyvalerate)) as a matrix and cellulose particles as fillers. In this study, gas-phase esterified cellulose particles, with palmitoyl chloride, were used to improve filler-matrix compatibility and reduce moisture sensitivity. Structural analysis demonstrated that intrinsic properties of the polymer matrix (crystallinity, and molecular weight) were not more significantly affected by the incorporation of cellulose, either virgin or grafted. Only a little decrease in matrix thermal stability was noticed, this being limited by cellulose grafting. Gas-phase esterification of cellulose improved the filler's dispersion state and filler/matrix interfacial adhesion, as shown by SEM cross-section observations, and limiting the degradation of tensile properties (stress and strain at break). Water vapor permeability, moisture, and liquid water uptake of biocomposites were increased compared to the neat matrix. The increase in thermodynamic parameters was limited in the case of grafted cellulose, principally ascribed to their increased hydrophobicity. However, no significant effect of grafting was noticed regarding diffusion parameters.

5.
Int J Mol Sci ; 21(1)2019 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-31905702

RESUMO

Vine shoots are lignocellulosic agricultural residues. In addition to being an interesting source of polyphenols, they can be used as fillers in a poly(3-hydroxybutyrate-3-hydroxyvalerate) (PHBV) matrix to decrease the overall cost and to propose an alternative to non-biodegradable fossil-based materials. The objective of the present work was to investigate how the incorporation of vine shoots fillers and a preliminary polyphenol extraction step could impact the biodegradability of biocomposites. Biocomposites (20 wt %) were produced by microcompounding. The biodegradation of materials was assessed by respirometric tests in soil. The negative impact of polyphenols on the biodegradability of vine shoots was confirmed. This was supported by crystallinity measurements and scanning electron microscopy (SEM) observations, which showed no difference in structure nor morphology between virgin and exhausted vine shoots particles. The incorporation of vine shoots fillers in PHBV slightly accelerated the overall biodegradation kinetics. All the biocomposites produced were considered fully biodegradable according to the French and European standard NF EN 17033, allowing the conclusion that up-cycling vine shoots for the production of lignocellulosic fillers is a promising strategy to provide biodegradable materials in natural conditions. Moreover, in a biorefinery context, polyphenol extraction from vine shoots has the advantage of improving their biodegradability.


Assuntos
Brotos de Planta/química , Poliésteres/química , Vitis/química , Biodegradação Ambiental , Lignina/química , Polifenóis/química
6.
RSC Adv ; 9(19): 10938-10947, 2019 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-35515317

RESUMO

The gas (O2 and CO2) permeability of an innovative stratified PE-organoclay (LLDPE/OMMT) nano-enabled composite films was studied for the first time and related to the self-assembly process driven by hydrophobic interactions. An 84.4% and a 70% reduction (i.e. a barrier improvement factor of about 6, sufficient for food packaging applications) were observed respectively in the oxygen and carbon dioxide permeability of the 5 bilayers coated film compared to the substrate, while only incorporating 2.4 v/v% of organoclay in the composite and increasing the thickness by 17.7%. Such drastic effect with so low amount of organoclays cannot be achieved by conventional melt blending/exfoliation of the clays into the polymer matrix and is due to a geometrical blocking effect of a brick-wall and compact layer structure of the impermeable clay tactoids. Mathematical prediction of oxygen barrier performance of PE/OMMT films has revealed that 12 bilayers would be necessary to further achieve a barrier improvement factor of 10.

7.
EFSA J ; 16(1): e05117, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32625668

RESUMO

This scientific opinion of the EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF Panel) deals with the safety evaluation of the recycling process 'Morssinkhof Plastics', EU register No RECYC0142. The input consists of crates, boxes, trays, pallets and containers, hereafter termed 'crates', used in food contact, made of high-density polyethylene (HDPE) or polypropylene (PP). It comprises unused damaged crates, prewashed used crates and parts of crates originating from closed and controlled product loops. The process separates crates by material type and food type (fruit, vegetables and prepacked meat vs unpacked meat). Flakes from recycled HDPE or PP are produced that will be used by customers to manufacture new crates for food contact. The Panel considered that the management system put in place to ensure compliance of the origin of the input with Commission Regulation (EC) No 282/2008 and to provide full traceability from input to final product is the critical process step. It concluded that the input of the process 'Morssinkhof Plastics' originates from product loops which are in closed and controlled chains designed to ensure that only materials and articles which have been intended for food contact are used and that any contamination can be ruled out when run under the conditions described by the applicant. The recycling process 'Morssinkhof Plastics' is, therefore, able to produce recycled HDPE and PP suitable for manufacturing HDPE and PP crates intended to be used in contact with dry food, fruits and vegetables, prepacked and unpacked meat. The use of regrind from 'external' recyclers only based on private agreements, does not give reassurance to fall under the scope of Art. 4 c (i) of Commission Regulation (EC) No 282/2008 and is excluded from the present evaluation.

8.
Chemosphere ; 144: 433-9, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26386433

RESUMO

In the aim of resolving environmental key issues such as irreversible soil pollution by non-biodegradable and non-recoverable polyethylene (PE) fragments, a full-scale field experiment was set up to evaluate the suitability of four biodegradable materials based on poly(butylene adipate-co-terephtalate) (PBAT) to be used as sustainable alternatives to PE for mulching application in vineyard. Initial ultimate tensile properties, functional properties during field ageing (water vapour permeability and radiometric properties), biodegradability and agronomical performance of the mulched vines (wood production and fruiting yield) were studied. In spite of their early loss of physical integrity that occurred only five months after vine planting, the four materials satisfied all the requested functional properties and led to agronomic performance as high as polyethylene. In the light of the obtained results, the mulching material lifespan was questioned in the case of long-term perennial crop such as grapevine. Taking into account their mulching efficiency and biodegradability, the four PBAT-based studied materials are proven to constitute suitable alternatives to the excessively resistant PE material.


Assuntos
Agricultura/métodos , Ácido Láctico/química , Poliésteres/química , Polímeros/química , Polipropilenos/química , Vitis/crescimento & desenvolvimento , Adipatos/química , Biodegradação Ambiental , Polietileno/química , Propriedades de Superfície , Resistência à Tração
9.
Compr Rev Food Sci Food Saf ; 14(1): 1-21, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33401814

RESUMO

Coupling gas transfer with predictive microbiology is essential to rationally design modified atmosphere packaging (MAP) strategies to ensure and guarantee food safety. Nowadays, these strategies are generally empirically built and over-sized since packaging material with high barrier properties is often chosen by default even if such a high level of protection is not systematically required. Protection strategies could be improved using rational sizing based on quantitative analysis and mathematical modeling of mass transfer. This paper aims at reviewing the current knowledge available for developing such a tool and the further research needed. First there is a special focus on oxygen (O2 ) and carbon dioxide (CO2 ) solubility and diffusivity parameters, which are absolutely indispensable to accurately model mass transfer in MAP systems. Next, the current knowledge of the effect of O2 /CO2 on the growth of microorganisms is explored with an emphasis on predictive microbiology. The last part points out the main bottlenecks and further research needed to be carried out in order to develop an efficient MAP modeling tool for food safety coupling O2 /CO2 transfer and predictive microbiology.

10.
J Food Prot ; 68(5): 1020-5, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15895736

RESUMO

The influence of three packaging conditions, i.e., unmodified atmosphere packaging (UAP), passive modified atmosphere packaging (MAP), and active MAP, on the natural microbial population growth of endive was investigated at 20 degrees C. For UAP, endive was placed in macroperforated oriented polypropylene pouches that maintained gas composition close to that of air (21 kPa O2 and 0 kPa CO2) but also limited superficial product dehydration. For MAP, endive was placed in low-density polyethylene pouches that induced a 3 kPa O2 and 5 kPa CO2 equilibrium atmosphere composition. Steady state was reached after 25 h of storage with an oxygen absorbing packet (active MAP) compared with 100 h without the packet (passive MAP) and was maintained for 200 h. After 312 h of storage, both active and passive MAP reduced total aerobic mesophile, yeast, and mold population growth compared with endive in UAP. Active MAP accelerated and improved the inhibition of Pseudomonas spp. and Enterobacteriaceae, respectively, probably because of the rapid O2 depletion during the transition period. A shift in the Enterobacteriaceae subpopulation from Rhanella aquatilis to Enterobacter agglomerans was observed for both passive and active MAP.


Assuntos
Bactérias Aeróbias/crescimento & desenvolvimento , Embalagem de Alimentos/métodos , Conservação de Alimentos/métodos , Verduras/microbiologia , Dióxido de Carbono/metabolismo , Contagem de Colônia Microbiana , Manipulação de Alimentos/métodos , Microbiologia de Alimentos , Oxigênio/metabolismo , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA