Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
PLoS Pathog ; 20(5): e1011749, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38739648

RESUMO

Hepatitis delta virus (HDV) infection represents the most severe form of human viral hepatitis; however, the mechanisms underlying its pathology remain incompletely understood. We recently developed an HDV mouse model by injecting adeno-associated viral vectors (AAV) containing replication-competent HBV and HDV genomes. This model replicates many features of human infection, including liver injury. Notably, the extent of liver damage can be diminished with anti-TNF-α treatment. Here, we found that TNF-α is mainly produced by macrophages. Downstream of the TNF-α receptor (TNFR), the receptor-interacting serine/threonine-protein kinase 1 (RIPK1) serves as a cell fate regulator, playing roles in both cell survival and death pathways. In this study, we explored the function of RIPK1 and other host factors in HDV-induced cell death. We determined that the scaffolding function of RIPK1, and not its kinase activity, offers partial protection against HDV-induced apoptosis. A reduction in RIPK1 expression in hepatocytes through CRISPR-Cas9-mediated gene editing significantly intensifies HDV-induced damage. Contrary to our expectations, the protective effect of RIPK1 was not linked to TNF-α or macrophage activation, as their absence did not alter the extent of damage. Intriguingly, in the absence of RIPK1, macrophages confer a protective role. However, in animals unresponsive to type-I IFNs, RIPK1 downregulation did not exacerbate the damage, suggesting RIPK1's role in shielding hepatocytes from type-I IFN-induced cell death. Interestingly, while the damage extent is similar between IFNα/ßR KO and wild type mice in terms of transaminase elevation, their cell death mechanisms differ. In conclusion, our findings reveal that HDV-induced type-I IFN production is central to inducing hepatocyte death, and RIPK1's scaffolding function offers protective benefits. Thus, type-I IFN together with TNF-α, contribute to HDV-induced liver damage. These insights may guide the development of novel therapeutic strategies to mitigate HDV-induced liver damage and halt disease progression.


Assuntos
Citocinas , Vírus Delta da Hepatite , Hepatócitos , Proteína Serina-Treonina Quinases de Interação com Receptores , Animais , Camundongos , Hepatócitos/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Citocinas/metabolismo , Vírus Delta da Hepatite/fisiologia , Hepatite D/metabolismo , Morte Celular , Camundongos Endogâmicos C57BL , Apoptose , Camundongos Knockout , Humanos , Fator de Necrose Tumoral alfa/metabolismo , Modelos Animais de Doenças
2.
Viruses ; 16(3)2024 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-38543745

RESUMO

Hepatitis D virus (HDV) infection represents the most severe form of chronic viral hepatitis. We have shown that the delivery of HDV replication-competent genomes to the hepatocytes using adeno-associated virus (AAV-HDV) as gene delivery vehicles offers a unique platform to investigate the molecular aspects of HDV and associated liver damage. For the purpose of this study, we generated HDV genomes modified by site-directed mutagenesis aimed to (i) prevent some post-translational modifications of HDV antigens (HDAgs) such as large-HDAg (L-HDAg) isoprenylation or short-HDAg (S-HDAg) phosphorylation; (ii) alter the localization of HDAgs within the subcellular compartments; and (iii) inhibit the right conformation of the delta ribozyme. First, the different HDV mutants were tested in vitro using plasmid-transfected Huh-7 cells and then in vivo in C57BL/6 mice using AAV vectors. We found that Ser177 phosphorylation and ribozymal activity are essential for HDV replication and HDAg expression. Mutations of the isoprenylation domain prevented the formation of infectious particles and increased cellular toxicity and liver damage. Furthermore, altering HDAg intracellular localization notably decreased viral replication, though liver damage remained unchanged versus normal HDAg distribution. In addition, a mutation in the nuclear export signal impaired the formation of infectious viral particles. These findings contribute valuable insights into the intricate mechanisms of HDV biology and have implications for therapeutic considerations.


Assuntos
Vírus Delta da Hepatite , RNA Viral , Animais , Camundongos , Antígenos da Hepatite delta/genética , Antígenos da Hepatite delta/metabolismo , RNA Viral/metabolismo , Camundongos Endogâmicos C57BL , Replicação Viral/genética , Processamento de Proteína Pós-Traducional , Fígado/metabolismo
3.
Nat Commun ; 15(1): 1876, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38485924

RESUMO

Developing clinically predictive model systems for evaluating gene transfer and gene editing technologies has become increasingly important in the era of personalized medicine. Liver-directed gene therapies present a unique challenge due to the complexity of the human liver. In this work, we describe the application of whole human liver explants in an ex situ normothermic perfusion system to evaluate a set of fourteen natural and bioengineered adeno-associated viral (AAV) vectors directly in human liver, in the presence and absence of neutralizing human sera. Under non-neutralizing conditions, the recently developed AAV variants, AAV-SYD12 and AAV-LK03, emerged as the most functional variants in terms of cellular uptake and transgene expression. However, when assessed in the presence of human plasma containing anti-AAV neutralizing antibodies (NAbs), vectors of human origin, specifically those derived from AAV2/AAV3b, were extensively neutralized, whereas AAV8- derived variants performed efficiently. This study demonstrates the potential of using normothermic liver perfusion as a model for early-stage testing of liver-focused gene therapies. The results offer preliminary insights that could help inform the development of more effective translational strategies.


Assuntos
Dependovirus , Vetores Genéticos , Humanos , Vetores Genéticos/genética , Dependovirus/genética , Anticorpos Neutralizantes , Fígado , Perfusão
4.
EMBO Mol Med ; 16(1): 112-131, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38182795

RESUMO

The therapeutic use of adeno-associated viral vector (AAV)-mediated gene disruption using CRISPR-Cas9 is limited by potential off-target modifications and the risk of uncontrolled integration of vector genomes into CRISPR-mediated double-strand breaks. To address these concerns, we explored the use of AAV-delivered paired Staphylococcus aureus nickases (D10ASaCas9) to target the Hao1 gene for the treatment of primary hyperoxaluria type 1 (PH1). Our study demonstrated effective Hao1 gene disruption, a significant decrease in glycolate oxidase expression, and a therapeutic effect in PH1 mice. The assessment of undesired genetic modifications through CIRCLE-seq and CAST-Seq analyses revealed neither off-target activity nor chromosomal translocations. Importantly, the use of paired-D10ASaCas9 resulted in a significant reduction in AAV integration at the target site compared to SaCas9 nuclease. In addition, our study highlights the limitations of current analytical tools in characterizing modifications introduced by paired D10ASaCas9, necessitating the development of a custom pipeline for more accurate characterization. These results describe a positive advance towards a safe and effective potential long-term treatment for PH1 patients.


Assuntos
Sistemas CRISPR-Cas , Hiperoxalúria Primária , Humanos , Animais , Camundongos , Desoxirribonuclease I/genética , Desoxirribonuclease I/metabolismo , Edição de Genes , Hiperoxalúria Primária/genética , Hiperoxalúria Primária/terapia
5.
Pharmaceutics ; 15(10)2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37896219

RESUMO

Gene therapy is a promising strategy to treat and cure most inherited metabolic liver disorders. Viral vectors such as those based on adeno-associated viruses (AAVs) and lentiviruses (LVs) are used as vehicles to deliver functional genes to affected hepatocytes. Adverse events associated with the use of high vector doses have motivated the use of small molecules as adjuvants to reduce the dose. In this study, we showed that a one-hour treatment with topoisomerase inhibitors (camptothecin and etoposide) prior to viral transduction is enough to increase AAV and LV reporter expression in non-dividing hepatic cells in culture. Topoisomerase inhibitors increased both integration-competent (ICLV) and integration-deficient (IDLV) LV-derived expression, with a much stronger increase in the IDLV transduction system. In agreement with that, topoisomerase inhibitors increased viral genome integration in both strains, with a greater impact on the IDLV strain, supporting the idea that topoisomerase inhibitors increased episomal DNA integration, especially when viral integrase activity is abolished. These effects correlated with an increase in the DNA damage response produced by the treatments. Our study highlights the need to monitor DNA damage and undesired integration of viral episomal DNAs into the host genome when studying chemical compounds that increase viral transduction.

6.
Hum Gene Ther ; 34(17-18): 836-852, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37672519

RESUMO

As the clinical experience in adeno-associated viral (AAV) vector-based gene therapies is expanding, the necessity to better understand and control the host immune responses is also increasing. Immunogenicity of AAV vectors in humans has been linked to several limitations of the platform, including lack of efficacy due to antibody-mediated neutralization, tissue inflammation, loss of transgene expression, and in some cases, complement activation and acute toxicities. Nevertheless, significant knowledge gaps remain in our understanding of the mechanisms of immune responses to AAV gene therapies, further hampered by the failure of preclinical animal models to recapitulate clinical findings. In this review, we focus on the current knowledge regarding immune responses, spanning from innate immunity to humoral and adaptive responses, triggered by AAV vectors and how they can be mitigated for safer, durable, and more effective gene therapies.


Assuntos
Ativação do Complemento , Imunidade Inata , Animais , Humanos , Terapia Genética , Inflamação , Modelos Animais
7.
Neurobiol Dis ; 183: 106166, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37245833

RESUMO

Synucleinopathies are a group of neurodegenerative diseases without effective treatment characterized by the abnormal aggregation of alpha-synuclein (aSyn) protein. Changes in levels or in the amino acid sequence of aSyn (by duplication/triplication of the aSyn gene or point mutations in the encoding region) cause familial cases of synucleinopathies. However, the specific molecular mechanisms of aSyn-dependent toxicity remain unclear. Increased aSyn protein levels or pathological mutations may favor abnormal protein-protein interactions (PPIs) that could either promote neuronal death or belong to a coping response program against neurotoxicity. Therefore, the identification and modulation of aSyn-dependent PPIs can provide new therapeutic targets for these diseases. To identify aSyn-dependent PPIs we performed a proximity biotinylation assay based on the promiscuous biotinylase BioID2. When expressed as a fusion protein, BioID2 biotinylates by proximity stable and transient interacting partners, allowing their identification by streptavidin affinity purification and mass spectrometry. The aSyn interactome was analyzed using BioID2-tagged wild-type (WT) and pathological mutant E46K aSyn versions in HEK293 cells. We found the 14-3-3 epsilon isoform as a common protein interactor for WT and E46K aSyn. 14-3-3 epsilon correlates with aSyn protein levels in brain regions of a transgenic mouse model overexpressing WT human aSyn. Using a neuronal model in which aSyn cell-autonomous toxicity is quantitatively scored by longitudinal survival analysis, we found that stabilization of 14-3-3 protein-proteins interactions with Fusicoccin-A (FC-A) decreases aSyn-dependent toxicity. Furthermore, FC-A treatment protects dopaminergic neuronal somas in the substantia nigra of a Parkinson's disease mouse model. Based on these results, we propose that the stabilization of 14-3-3 epsilon interaction with aSyn might reduce aSyn toxicity, and highlight FC-A as a potential therapeutic compound for synucleinopathies.


Assuntos
Sinucleinopatias , alfa-Sinucleína , Camundongos , Humanos , Animais , alfa-Sinucleína/metabolismo , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Células HEK293 , Camundongos Transgênicos , Neurônios Dopaminérgicos/metabolismo
8.
JHEP Rep ; 5(5): 100713, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37096142

RESUMO

Background & Aims: Gene therapy using recombinant adeno-associated virus (rAAV) vector carrying multidrug resistance protein 3 (MDR3) coding sequence (AAV8-MDR3) represents a potential curative treatment for progressive familial intrahepatic cholestasis type 3 (PFIC3), which presents in early childhood. However, patients with the severest form of PFIC3 should receive treatment early after detection to prevent irreversible hepatic fibrosis leading ultimately to liver transplantation or death. This represents a challenge for rAAV-based gene therapy because therapeutic efficacy is expected to wane as rAAV genomes are lost owing to hepatocyte division, and the formation of AAV-specific neutralising antibodies precludes re-administration. Here, we tested a strategy of vector re-administration in infant PFIC3 mice with careful evaluation of its oncogenicity - a particular concern surrounding rAAV treatment. Methods: AAV8-MDR3 was re-administered to infant Abcb4 -/- mice 2 weeks after a first dose co-administered with tolerogenic nanoparticles carrying rapamycin (ImmTOR) given at 2 weeks of age. Eight months later, long-term therapeutic efficacy and safety were assessed with special attention paid to the potential oncogenicity of rAAV treatment. Results: Co-administration with ImmTOR mitigated the formation of rAAV-specific neutralising antibodies and enabled an efficacious second administration of AAV8-MDR3, resulting in stable correction of the disease phenotype, including a restoration of bile phospholipid content and healthy liver function, as well as the prevention of liver fibrosis, hepatosplenomegaly, and gallstones. Furthermore, efficacious repeat rAAV administration prevented the appearance of liver malignancies in an animal model highly prone to developing hepatocellular carcinoma. Conclusions: These outcomes provide strong evidence for rAAV redosing through co-administration with ImmTOR, as it resulted in a long-term therapeutic effect in a paediatric liver metabolic disorder, including the prevention of oncogenesis. Impact and implications: Redosing of gene therapy for inborn hepatobiliary disorders may be essential as effect wanes during hepatocyte division and renewal, particularly in paediatric patients, but the approach may carry long-term risks of liver cancer. Viral vectors carrying a therapeutic gene exerted a durable cure of progressive familial intrahepatic cholestasis type 3 in infant mice and reduced the risk of liver cancer only following a second administration.

9.
Hum Gene Ther ; 34(7-8): 273-288, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36927149

RESUMO

The liver is a prime target for in vivo gene therapies using recombinant adeno-associated viral vectors. Multiple clinical trials have been undertaken for this target in the past 15 years; however, we are still to see market approval of the first liver-targeted adeno-associated virus (AAV)-based gene therapy. Inefficient expression of the therapeutic transgene, vector-induced liver toxicity and capsid, and/or transgene-mediated immune responses reported at high vector doses are the main challenges to date. One of the contributing factors to the insufficient clinical outcomes, despite highly encouraging preclinical data, is the lack of robust, biologically and clinically predictive preclinical models. To this end, this study reports findings of a functional evaluation of 6 AAV vectors in 12 preclinical models of the human liver, with the aim to uncover which combination of models is the most relevant for the identification of AAV capsid variant for safe and efficient transgene delivery to primary human hepatocytes. The results, generated by studies in models ranging from immortalized cells, iPSC-derived and primary hepatocytes, and primary human hepatic organoids to in vivo models, increased our understanding of the strengths and weaknesses of each system. This should allow the development of novel gene therapies targeting the human liver.


Assuntos
Dependovirus , Fígado , Humanos , Dependovirus/genética , Fígado/metabolismo , Terapia Genética/métodos , Hepatócitos/metabolismo , Proteínas do Capsídeo/metabolismo , Tropismo , Vetores Genéticos/genética
10.
Nat Rev Gastroenterol Hepatol ; 20(5): 288-305, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36646909

RESUMO

Gene therapy is poised to revolutionize modern medicine, with seemingly unlimited potential for treating and curing genetic disorders. For otherwise incurable indications, including most inherited metabolic liver disorders, gene therapy provides a realistic therapeutic option. In this Review, we discuss gene supplementation and gene editing involving the use of recombinant adeno-associated virus (rAAV) vectors for the treatment of inherited liver diseases, including updates on several ongoing clinical trials that are producing promising results. Clinical testing has been essential in highlighting many key translational challenges associated with this transformative therapy. In particular, the interaction of a patient's immune system with the vector raises issues of safety and the duration of treatment efficacy. Furthermore, several serious adverse events after the administration of high doses of rAAVs suggest greater involvement of innate immune responses and pre-existing hepatic conditions than initially anticipated. Finally, permanent modification of the host genome associated with rAAV genome integration and gene editing raises concerns about the risk of oncogenicity that require careful evaluation. We summarize the main progress, challenges and pathways forward for gene therapy for liver diseases.


Assuntos
Vetores Genéticos , Hepatopatias , Humanos , Terapia Genética/métodos , Hepatopatias/genética , Hepatopatias/terapia , Imunidade Inata
11.
Glia ; 71(3): 571-587, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36353934

RESUMO

Inflammation is a common feature in neurodegenerative diseases that contributes to neuronal loss. Previously, we demonstrated that the basal inflammatory tone differed between brain regions and, consequently, the reaction generated to a pro-inflammatory stimulus was different. In this study, we assessed the innate immune reaction in the midbrain and in the striatum using an experimental model of Parkinson's disease. An adeno-associated virus serotype 9 expressing the α-synuclein and mCherry genes or the mCherry gene was administered into the substantia nigra. Myeloid cells (CD11b+ ) and astrocytes (ACSA2+ ) were purified from the midbrain and striatum for bulk RNA sequencing. In the parkinsonian midbrain, CD11b+ cells presented a unique anti-inflammatory transcriptomic profile that differed from degenerative microglia signatures described in experimental models for other neurodegenerative conditions. By contrast, striatal CD11b+ cells showed a pro-inflammatory state and were similar to disease-associated microglia. In the midbrain, a prominent increase of infiltrated monocytes/macrophages was observed and, together with microglia, participated actively in the phagocytosis of dopaminergic neuronal bodies. Although striatal microglia presented a phagocytic transcriptomic profile, morphology and cell density was preserved and no active phagocytosis was detected. Interestingly, astrocytes presented a pro-inflammatory fingerprint in the midbrain and a low number of differentially displayed transcripts in the striatum. During α-synuclein-dependent degeneration, microglia and astrocytes experience context-dependent activation states with a different contribution to the inflammatory reaction. Our results point towards the relevance of selecting appropriate cell targets to design neuroprotective strategies aimed to modulate the innate immune system during the active phase of dopaminergic degeneration.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Camundongos , Animais , Doença de Parkinson/genética , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Microglia/metabolismo , Astrócitos/metabolismo , Mesencéfalo/metabolismo , Inflamação
12.
Int J Mol Sci ; 23(23)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36499263

RESUMO

Citrullinemia type I (CTLN1) is a rare autosomal recessive disorder caused by mutations in the gene encoding argininosuccinate synthetase 1 (ASS1) that catalyzes the third step of the urea cycle. CTLN1 patients suffer from impaired elimination of nitrogen, which leads to neurotoxic levels of circulating ammonia and urea cycle byproducts that may cause severe metabolic encephalopathy, death or irreversible brain damage. Standard of care (SOC) of CTLN1 consists of daily nitrogen-scavenger administration, but patients remain at risk of life-threatening decompensations. We evaluated the therapeutic efficacy of a recombinant adeno-associated viral vector carrying the ASS1 gene under the control of a liver-specific promoter (VTX-804). When administered to three-week-old CTLN1 mice, all the animals receiving VTX-804 in combination with SOC gained body weight normally, presented with a normalization of ammonia and reduction of citrulline levels in circulation, and 100% survived for 7 months. Similar to what has been observed in CTLN1 patients, CTLN1 mice showed several behavioral abnormalities such as anxiety, reduced welfare and impairment of innate behavior. Importantly, all clinical alterations were notably improved after treatment with VTX-804. This study demonstrates the potential of VTX-804 gene therapy for future clinical translation to CTLN1 patients.


Assuntos
Amônia , Citrulinemia , Camundongos , Animais , Nitrogênio , Citrulinemia/genética , Citrulinemia/terapia , Argininossuccinato Sintase/genética , Argininossuccinato Sintase/metabolismo , Terapia Genética , Ureia/metabolismo
13.
Int J Mol Sci ; 23(19)2022 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-36232593

RESUMO

Type I interferons (IFN), including IFNß, play a protective role in multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE). Type I IFNs are induced by the stimulation of innate signaling, including via cytoplasmic RIG-I-like receptors. In the present study, we investigated the potential effect of a chimeric protein containing the key domain of RIG-I signaling in the production of CNS endogenous IFNß and asked whether this would exert a therapeutic effect against EAE. We intrathecally administered an adeno-associated virus vector (AAV) encoding a fusion protein comprising RIG-I 2CARD domains (C) and the first 200 amino acids of mitochondrial antiviral-signaling protein (MAVS) (M) (AAV-CM). In vivo imaging in IFNß/luciferase reporter mice revealed that a single intrathecal injection of AAV-CM resulted in dose-dependent and sustained IFNß expression within the CNS. IFNß expression was significantly increased for 7 days. Immunofluorescent staining in IFNß-YFP reporter mice revealed extraparenchymal CD45+ cells, choroid plexus, and astrocytes as sources of IFNß. Moreover, intrathecal administration of AAV-CM at the onset of EAE induced the suppression of EAE, which was IFN-I-dependent. These findings suggest that accessing the signaling pathway downstream of RIG-I represents a promising therapeutic strategy for inflammatory CNS diseases, such as MS.


Assuntos
Encefalomielite Autoimune Experimental , Interferon Tipo I , Aminoácidos , Animais , Antivirais , Encefalomielite Autoimune Experimental/tratamento farmacológico , Interferon Tipo I/metabolismo , Interferon beta/genética , Interferon beta/metabolismo , Camundongos , Proteínas Recombinantes de Fusão , Transdução de Sinais
14.
Mol Ther Methods Clin Dev ; 26: 98-106, 2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-35795774

RESUMO

Wilson's disease (WD) is an inherited disorder of copper metabolism associated with mutations in ATP7B gene. We have shown that the administration of an adeno-associated vector (AAV) encoding a mini version of human ATP7B (VTX-801) provides long-term correction of copper metabolism in a murine WD model. In preparation of a future clinical trial, we have evaluated by positron emission tomography (PET) the value of 64Cu biodistribution, excretion pattern, and blood kinetics as pharmacodynamic biomarkers of VTX-801 effects. Six-week-old WD mice were injected intravenously with increasing doses of VTX-801 and 3 weeks or 3 months later with [64Cu]CuCl2. Untreated WD and wild-type (WT) mice were included as controls. Control WD mice showed increased hepatic 64Cu retention, reduced fecal excretion of the radiotracer, and altered 64Cu blood kinetics (BK) compared with WT mice. VTX-801 treatment in WD mice resulted in a significant reduction of hepatic 64Cu accumulation, the restoration of fecal 64Cu excretion, and the correction of 64Cu BK. This study showed that VTX-801 restores physiological copper metabolism in WD mice, confirming the mechanism of action of VTX-801, and demonstrated the translational potential of [64Cu]CuCl2-PET to explore VTX-801 pharmacodynamics in a minimally invasive and sensitive manner in WD patients.

15.
Cell Biosci ; 12(1): 79, 2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35641984

RESUMO

BACKGROUND: Bile acid (BA) homeostasis is mainly regulated by bile salt excretory pump (BSEP), a hepatocyte transporter that transfers BAs to the bile. BSEP expression is regulated by BA levels through activation of farnesoid X receptor transcription factor, which binds to the inverted repeat (IR-1) element in the BSEP promoter. Gene therapy of cholestatic diseases could benefit from using vectors carrying endogenous promoters physiologically regulated by BAs, however their large size limits this approach, especially when using adeno-associated viral vector (AAV) vectors. RESULTS: We evaluated the functionality and BA-mediated regulation of minimal versions of human and mouse BSEP promoters containing IR-1 using AAV vectors expressing luciferase. Unexpectedly, a minimal mouse BSEP promoter (imPr) showed higher BA-mediated expression and inducibility than a minimal human promoter (ihPr) or than full-length BSEP promoters in human hepatic cells. In addition, in mice receiving an AAV8 vector carrying imPr promoter-driven luciferase expression was efficiently regulated by administration of a BA-enriched diet. Interestingly, this vector also expressed significantly higher luciferase levels in Abcb4-/- mice, which have high levels of BAs, compared to wild type mice, or to mice receiving a vector containing the luciferase gene downstream of the constitutive alpha-1 antitrypsin promoter. In contrast, the AAV vector containing ihPr showed very low luciferase expression with no inducibility. Finally, we optimized imPr by adding three IR-1 repeats at its 5' end. This new promoter provided higher levels of luciferase than imPr both in vitro and in vivo. CONCLUSIONS: The imPr could represent a useful tool for gene therapy approaches in which physiological BA regulation is desired.

16.
Hepatology ; 76(3): 869-887, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35243655

RESUMO

The efficient delivery of RNA molecules to restore the expression of a missing or inadequately functioning protein in a target cell and the intentional specific modification of the host genome using engineered nucleases represent therapeutic concepts that are revolutionizing modern medicine. The initiation of several clinical trials using these approaches to treat metabolic liver disorders as well as the recently reported remarkable results obtained by patients with transthyretin amyloidosis highlight the advances in this field and show the potential of these therapies to treat these diseases safely and efficaciously. These advances have been possible due, firstly, to significant improvements made in RNA chemistry that increase its stability and prevent activation of the innate immune response and, secondly, to the development of very efficient liver-targeted RNA delivery systems. In parallel, the breakout of CRISPR/CRISPR-associated 9-based technology in the gene editing field has marked a turning point in in vivo modification of the cellular genome with therapeutic purposes, which can be based on gene supplementation, correction, or silencing. In the coming years we are likely to witness the therapeutic potential of these two strategies both separately and in combination. In this review we summarize the preclinical data obtained in animal models treated with mRNA as a therapeutic agent and discuss the different gene editing strategies applied to the treatment of liver diseases, highlighting both their therapeutic efficacy as well as safety concerns.


Assuntos
Edição de Genes , Hepatopatias , Animais , Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Edição de Genes/métodos , Hepatopatias/genética , Hepatopatias/terapia , RNA Mensageiro/genética
17.
Clin Transl Immunology ; 11(2): e1375, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35228870

RESUMO

OBJECTIVE: Pre-existing neutralising antibodies (NAbs) to adeno-associated viruses (AAVs) remain an impediment for systemically administered AAV-mediated gene therapy treatment in many patients, and various strategies are under investigation to overcome this limitation. Here, IgG-degrading enzymes (Ides) derived from bacteria of the genus Streptococcus were tested for their ability to cleave human IgG and allow AAV-mediated transduction in individuals with pre-existing NAbs. METHODS: Cleavage activity of three different Ides was evaluated in vitro in serum from different species. Passively immunised mice or non-human primates (NHP) with naturally occurring anti-AAV NAbs were used to define the optimal IdeS dose and administration window for AAVAnc80 and AAV8 vectors in mice and AAV3B in NHPs. RESULTS: The selected candidate, IdeS, was found to be highly efficient at cleaving human IgG, less efficient against NHP IgG and inefficient against mouse IgG. In vivo, we observed differences in how IdeS affected liver transduction in the presence of NAbs depending on the AAV serotype. For AAVAnc80 and AAV3B, the best transduction levels were achieved when the vector was administered after IgG digestion products were cleared from circulation. However, for AAV8 we only observed a modest and transient inhibition of transduction by IdeS cleavage products. CONCLUSION: Preconditioning with IdeS represents a unique treatment opportunity for patients primarily excluded from participation in gene therapy clinical trials because of elevated circulating anti-AAV NAb levels. However, careful determination of the optimal IdeS dose and timing for the administration of each AAV serotype is essential for optimal transduction.

18.
J Immunother Cancer ; 9(11)2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34810235

RESUMO

BACKGROUND: Target antigen (Ag) loss has emerged as a major cause of relapse after chimeric antigen receptor T (CART)-cell therapy. We reasoned that the combination of CART cells, with the consequent tumor debulking and release of Ags, together with an immunomodulatory agent, such as the stimulator of interferon gene ligand (STING-L) 2'3'-cyclic GMP-AMP (2'3'-cGAMP), may facilitate the activation of an endogenous response to secondary tumor Ags able to counteract this tumor escape mechanism. METHODS: Mice bearing B16-derived tumors expressing prostate-specific membrane Ag or gp75 were treated systemically with cognate CART cells followed by intratumoral injections of 2'3'-cGAMP. We studied the target Ag inmunoediting by CART cells and the effect of the CART/STING-L combination on the control of STING-L-treated and STING-L-non-treated tumors and on the endogenous antitumor T-cell response. The role of Batf3-dependent dendritic cells (DCs), stimulator of interferon gene (STING) signaling and perforin (Perf)-mediated killing in the efficacy of the combination were analyzed. RESULTS: Using an immune-competent solid tumor model, we showed that CART cells led to the emergence of tumor cells that lose the target Ag, recreating the cancer immunoediting effect of CART-cell therapy. In this setting, the CART/STING-L combination, but not the monotherapy with CART cells or STING-L, restrained tumor progression and enhanced overall survival, showing abscopal effects on distal STING-L-non-treated tumors. Interestingly, a secondary immune response against non-chimeric antigen receptor-targeted Ags (epitope spreading), as determined by major histocompatibility complex-I-tetramer staining, was fostered and its intensity correlated with the efficacy of the combination. This was consistent with the oligoclonal expansion of host T cells, as revealed by in-depth T-cell receptor repertoire analysis. Moreover, only in the combination group did the activation of endogenous T cells translate into a systemic antitumor response. Importantly, the epitope spreading and the antitumor effects of the combination were fully dependent on host STING signaling and Batf3-dependent DCs, and were partially dependent on Perf release by CART cells. Interestingly, the efficacy of the CART/STING-L treatment also depended on STING signaling in CART cells. CONCLUSIONS: Our data show that 2'3'-cGAMP is a suitable adjuvant to combine with CART-cell therapy, allowing the induction of an endogenous T-cell response that prevents the outgrowth of Ag-loss tumor variants.


Assuntos
Epitopos/genética , Imunoterapia Adotiva/métodos , Imunoterapia/métodos , Neoplasias/genética , Evasão Tumoral/genética , Animais , Humanos , Masculino , Camundongos
19.
Mol Ther Methods Clin Dev ; 22: 210-221, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34485606

RESUMO

Cerebrotendinous xanthomatosis (CTX) is an autosomal recessive disease caused by mutations in the CYP27A1 gene, encoding the sterol 27-hydroxylase. Disruption of the bile acid biosynthesis pathway and accumulation of toxic precursors such as cholestanol cause chronic diarrhea, bilateral juvenile cataracts, tissue deposition of cholestanol and cholesterol (xanthomas), and progressive motor/neuropsychiatric alterations. We have evaluated the therapeutic potential of adeno-associated virus (AAV) vectors expressing CYP27A1 in a CTX mouse model. We found that a vector equipped with a strong liver-specific promoter (albumin enhancer fused with the α1 anti-trypsin promoter) is well tolerated and shows therapeutic effect at relatively low doses (1.5 × 1012 viral genomes [vg]/kg), when less than 20% of hepatocytes overexpress the transgene. This vector restored bile acid metabolism and normalized the concentration of most bile acids in plasma. By contrast, standard treatment (oral chenodeoxycholic acid [CDCA]), while reducing cholestanol, did not normalize bile acid composition in plasma and resulted in supra-physiological levels of CDCA and its derivatives. At the transcriptional level, only the vector was able to avoid the induction of xenobiotic-induced pathways in mouse liver. In conclusion, the overexpression of CYP27A1 in a fraction of hepatocytes using AAV vectors is well tolerated and provides full metabolic restoration in Cyp27a1 -/- mice. These features make gene therapy a feasible option for the etiological treatment of CTX patients.

20.
Emerg Microbes Infect ; 10(1): 1931-1946, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34538222

RESUMO

Identification of relevant epitopes is crucial for the development of subunit peptide vaccines inducing neutralizing and cellular immunity against SARS-CoV-2. Our aim was the characterization of epitopes in the receptor-binding domain (RBD) of SARS-CoV-2 spike (S) protein to generate a peptide vaccine. Epitope mapping using a panel of 10 amino acid overlapped 15-mer peptides covering region 401-515 from RBD did not identify linear epitopes when tested with sera from infected individuals or from RBD-immunized mice. However, immunization of mice with these 15-mer peptides identified four peptides located at region 446-480 that induced antibodies recognizing the peptides and RBD/S1 proteins. Immunization with peptide 446-480 from S protein formulated with Freund's adjuvant or with CpG oligodeoxinucleotide/Alum induced polyepitopic antibody responses in BALB/c and C56BL/6J mice, recognizing RBD (titres of 3 × 104-3 × 105, depending on the adjuvant) and displaying neutralizing capacity (80-95% inhibition capacity; p < 0.05) against SARS-CoV-2. Murine CD4 and CD8T-cell epitopes were identified in region 446-480 and vaccination experiments using HLA transgenic mice suggested the presence of multiple human T-cell epitopes. Antibodies induced by peptide 446-480 showed broad recognition of S proteins and S-derived peptides belonging to SARS-CoV-2 variants of concern. Importantly, vaccination with peptide 446-480 or with a cyclic version of peptide 446-488 containing a disulphide bridge between cysteines 480 and 488, protected humanized K18-hACE2 mice from a lethal dose of SARS-CoV-2 (62.5 and 75% of protection; p < 0.01 and p < 0.001, respectively). This region could be the basis for a peptide vaccine or other vaccine platforms against Covid-19.


Assuntos
Anticorpos Neutralizantes/imunologia , Vacinas contra COVID-19/imunologia , COVID-19/prevenção & controle , Imunidade Celular , Imunidade Humoral , SARS-CoV-2/imunologia , Adjuvantes Imunológicos/administração & dosagem , Animais , Anticorpos Neutralizantes/sangue , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , COVID-19/imunologia , Vacinas contra COVID-19/normas , Reações Cruzadas/imunologia , Mapeamento de Epitopos , Epitopos de Linfócito B , Epitopos de Linfócito T/imunologia , Humanos , Imunização , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinas de Subunidades Antigênicas/imunologia , Vacinas Sintéticas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA