Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Clin Cancer Res ; 27(20): 5669-5680, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34433651

RESUMO

PURPOSE: The epigenetic mechanisms involved in transcriptional regulation leading to malignant phenotype in gliomas remains poorly understood. Topoisomerase IIB (TOP2B), an enzyme that decoils and releases torsional forces in DNA, is overexpressed in a subset of gliomas. Therefore, we investigated its role in epigenetic regulation in these tumors. EXPERIMENTAL DESIGN: To investigate the role of TOP2B in epigenetic regulation in gliomas, we performed paired chromatin immunoprecipitation sequencing for TOP2B and RNA-sequencing analysis of glioma cell lines with and without TOP2B inhibition and in human glioma specimens. These experiments were complemented with assay for transposase-accessible chromatin using sequencing, gene silencing, and mouse xenograft experiments to investigate the function of TOP2B and its role in glioma phenotypes. RESULTS: We discovered that TOP2B modulates transcription of multiple oncogenes in human gliomas. TOP2B regulated transcription only at sites where it was enzymatically active, but not at all native binding sites. In particular, TOP2B activity localized in enhancers, promoters, and introns of PDGFRA and MYC, facilitating their expression. TOP2B levels and genomic localization was associated with PDGFRA and MYC expression across glioma specimens, which was not seen in nontumoral human brain tissue. In vivo, TOP2B knockdown of human glioma intracranial implants prolonged survival and downregulated PDGFRA. CONCLUSIONS: Our results indicate that TOP2B activity exerts a pleiotropic role in transcriptional regulation of oncogenes in a subset of gliomas promoting a proliferative phenotype.


Assuntos
Neoplasias Encefálicas/genética , DNA Topoisomerases Tipo II/fisiologia , Epigênese Genética/fisiologia , Glioma/genética , Íntrons/fisiologia , Oncogenes/fisiologia , Proteínas de Ligação a Poli-ADP-Ribose/fisiologia , Regiões Promotoras Genéticas/fisiologia , Animais , Neoplasias Encefálicas/enzimologia , Regulação Neoplásica da Expressão Gênica , Glioma/enzimologia , Humanos , Camundongos
2.
Oncogene ; 39(27): 5068-5081, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32528131

RESUMO

Topoisomerase II poisons are one of the most common class of chemotherapeutics used in cancer. We and others had shown that a subset of glioblastomas, the most malignant of all primary brain tumors in adults, is responsive to TOP2 poisons. To identify genes that confer susceptibility to this drug in gliomas, we performed a genome-scale CRISPR knockout screen with etoposide. Genes involved in protein synthesis and DNA damage were implicated in etoposide susceptibility. To define potential biomarkers for TOP2 poisons, CRISPR hits were overlapped with genes whose expression correlates with susceptibility to this drug across glioma cell lines, revealing ribosomal protein subunit RPS11, 16, and 18 as putative biomarkers for response to TOP2 poisons. Loss of RPS11 led to resistance to etoposide and doxorubicin and impaired the induction of proapoptotic gene APAF1 following treatment. The expression of these ribosomal subunits was also associated with susceptibility to TOP2 poisons across cell lines from gliomas and multiple other cancers.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Etoposídeo/farmacologia , Glioblastoma/tratamento farmacológico , Proteínas Ribossômicas/metabolismo , Inibidores da Topoisomerase II/farmacologia , Fator Apoptótico 1 Ativador de Proteases/metabolismo , Neoplasias Encefálicas/genética , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , DNA Topoisomerases Tipo II/metabolismo , Doxorrubicina/farmacologia , Técnicas de Inativação de Genes , Glioblastoma/genética , Humanos
3.
Clin Cancer Res ; 26(16): 4390-4401, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32430477

RESUMO

PURPOSE: Cancer immunoediting shapes tumor progression by the selection of tumor cell variants that can evade immune recognition. Given the immune evasion and intratumor heterogeneity characteristic of gliomas, we hypothesized that CD8+ T cells mediate immunoediting in these tumors. EXPERIMENTAL DESIGN: We developed retrovirus-induced PDGF+ Pten -/- murine gliomas and evaluated glioma progression and tumor immunogenicity in the absence of CD8+ T cells by depleting this immune cell population. Furthermore, we characterized the genomic alterations present in gliomas that developed in the presence and absence of CD8+ T cells. RESULTS: Upon transplantation, gliomas that developed in the absence of CD8+ T cells engrafted poorly in recipients with intact immunity but engrafted well in those with CD8+ T-cell depletion. In contrast, gliomas that developed under pressure from CD8+ T cells were able to fully engraft in both CD8+ T-cell-depleted mice and immunocompetent mice. Remarkably, gliomas developed in the absence of CD8+ T cells exhibited increased aneuploidy, MAPK pathway signaling, gene fusions, and macrophage/microglial infiltration, and showed a proinflammatory phenotype. MAPK activation correlated with macrophage/microglia recruitment in this model and in the human disease. CONCLUSIONS: Our studies indicate that, in these tumor models, CD8+ T cells influence glioma oncogenic pathways, tumor genotype, and immunogenicity. This suggests immunoediting of immunogenic tumor clones through their negative selection by CD8+ T cells during glioma formation.


Assuntos
Neoplasias Encefálicas/imunologia , Glioma/imunologia , Evasão da Resposta Imune/imunologia , Linfócitos T/imunologia , Animais , Antígenos de Neoplasias/imunologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linfócitos T CD8-Positivos/imunologia , Modelos Animais de Doenças , Glioma/genética , Glioma/patologia , Humanos , Macrófagos/imunologia , Macrófagos/patologia , Camundongos , Microglia/imunologia , Microglia/patologia , Linfócitos T/patologia
4.
Int J Cancer ; 146(8): 2218-2228, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-31443114

RESUMO

Glioblastoma (GBM) is one of the most aggressive primary brain tumors with frequent recurrences following the standard methods of treatment-temozolomide (TMZ), ionizing radiation and surgical resection. The objective of our study was to investigate GBM resistance mediated via MMP14 (matrix metalloproteinase 14). We used multiple PDX GBM models and established glioma cell lines to characterize expression and subcellular localization of MMP14 after TMZ treatment. We performed a Kiloplex ELISA-based array to evaluate changes in cellular proteins induced by MMP14 expression and translocation. Lastly, we conducted functional and mechanistic studies to elucidate the role of DLL4 (delta-like canonical notch ligand 4) in regulation of glioma stemness, particularly in the context of its relationship to MMP14. We detected that TMZ treatment promotes nuclear translocation of MMP14 followed by extracellular release of DLL4. DLL4 in turn stimulates cleavage of Notch3, its nuclear translocation and induction of sphering capacity and stemness.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Metaloproteinase 14 da Matriz/metabolismo , Proteínas de Membrana/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Receptor Notch3/metabolismo , Temozolomida/farmacologia , Animais , Biomarcadores Tumorais/biossíntese , Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Metaloproteinase 14 da Matriz/biossíntese , Camundongos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Clin Cancer Res ; 26(2): 477-486, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31831565

RESUMO

PURPOSE: Paclitaxel shows little benefit in the treatment of glioma due to poor penetration across the blood-brain barrier (BBB). Low-intensity pulsed ultrasound (LIPU) with microbubble injection transiently disrupts the BBB allowing for improved drug delivery to the brain. We investigated the distribution, toxicity, and efficacy of LIPU delivery of two different formulations of paclitaxel, albumin-bound paclitaxel (ABX) and paclitaxel dissolved in cremophor (CrEL-PTX), in preclinical glioma models. EXPERIMENTAL DESIGN: The efficacy and biodistribution of ABX and CrEL-PTX were compared with and without LIPU delivery. Antiglioma activity was evaluated in nude mice bearing intracranial patient-derived glioma xenografts (PDX). Paclitaxel biodistribution was determined in sonicated and nonsonicated nude mice. Sonications were performed using a 1 MHz LIPU device (SonoCloud), and fluorescein was used to confirm and map BBB disruption. Toxicity of LIPU-delivered paclitaxel was assessed through clinical and histologic examination of treated mice. RESULTS: Despite similar antiglioma activity in vitro, ABX extended survival over CrEL-PTX and untreated control mice with orthotropic PDX. Ultrasound-mediated BBB disruption enhanced paclitaxel brain concentration by 3- to 5-fold for both formulations and further augmented the therapeutic benefit of ABX. Repeated courses of LIPU-delivered CrEL-PTX and CrEL alone were lethal in 42% and 37.5% of mice, respectively, whereas similar delivery of ABX at an equivalent dose was well tolerated. CONCLUSIONS: Ultrasound delivery of paclitaxel across the BBB is a feasible and effective treatment for glioma. ABX is the preferred formulation for further investigation in the clinical setting due to its superior brain penetration and tolerability compared with CrEL-PTX.


Assuntos
Albuminas/farmacologia , Albuminas/farmacocinética , Composição de Medicamentos/métodos , Sistemas de Liberação de Medicamentos/métodos , Glioma/tratamento farmacológico , Paclitaxel/farmacologia , Paclitaxel/farmacocinética , Polietilenoglicóis/química , Ultrassonografia/métodos , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Feminino , Glioma/patologia , Masculino , Camundongos , Camundongos Nus , Microbolhas/uso terapêutico , Nanopartículas/química , Taxa de Sobrevida , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
6.
BMC Cancer ; 16: 226, 2016 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-26983574

RESUMO

BACKGROUND: Post-transcriptional regulation by microRNAs is recognized as one of the major pathways for the control of cellular homeostasis. Less well understood is the transcriptional and epigenetic regulation of genes encoding microRNAs. In the present study we addressed the epigenetic regulation of the miR-181c in normal and malignant brain cells. METHODS: To explore the epigenetic regulation of the miR-181c we evaluated its expression using RT-qPCR and the in vivo binding of the CCCTC-binding factor (CTCF) to its regulatory region in different glioblastoma cell lines. DNA methylation survey, chromatin immunoprecipitation and RNA interference assays were used to assess the role of CTCF in the miR-181c epigenetic silencing. RESULTS: We found that miR-181c is downregulated in glioblastoma cell lines, as compared to normal brain tissues. Loss of expression correlated with a notorious gain of DNA methylation at the miR-181c promoter region and the dissociation of the multifunctional nuclear factor CTCF. Taking advantage of the genomic distribution of CTCF in different cell types we propose that CTCF has a local and cell type specific regulatory role over the miR-181c and not an architectural one through chromatin loop formation. This is supported by the depletion of CTCF in glioblastoma cells affecting the expression levels of NOTCH2 as a target of miR-181c. CONCLUSION: Together, our results point to the epigenetic role of CTCF in the regulation of microRNAs implicated in tumorigenesis.


Assuntos
Biomarcadores Tumorais/biossíntese , Glioblastoma/genética , MicroRNAs/biossíntese , Receptor Notch2/biossíntese , Proteínas Repressoras/biossíntese , Biomarcadores Tumorais/genética , Fator de Ligação a CCCTC , Linhagem Celular Tumoral , Metilação de DNA/genética , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Glioblastoma/patologia , Humanos , Receptor Notch2/genética , Proteínas Repressoras/genética
7.
Biochim Biophys Acta ; 1849(8): 955-65, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26079690

RESUMO

The three-dimensional architecture of genomes provides new insights about genome organization and function, but many aspects remain unsolved at the local genomic scale. Here we investigate the regulation of two erythroid-specific loci, a folate receptor gene (FOLR1) and the ß-globin gene cluster, which are separated by 16kb of constitutive heterochromatin. We found that in early erythroid differentiation the FOLR1 gene presents a permissive chromatin configuration that allows its expression. Once the transition to the next differentiation state occurs, the heterochromatin spreads into the FOLR1 domain, concomitant with the dissociation of CTCF from a novel binding site, thereby resulting in irreversible silencing of the FOLR1 gene. We demonstrate that the sequences surrounding the CTCF-binding site possess classical insulator properties in vitro and in vivo. In contrast, the chicken cHS4 ß-globin insulator present on the other side of the heterochromatic segment is in a constitutive open chromatin configuration, with CTCF constantly bound from the early stages of erythroid differentiation. Therefore, this study demonstrates that the 16kb of constitutive heterochromatin contributes to silencing of the FOLR1 gene during erythroid differentiation.


Assuntos
Receptor 1 de Folato/genética , Loci Gênicos , Elementos Isolantes/fisiologia , Globinas beta/genética , Animais , Diferenciação Celular/genética , Linhagem Celular Transformada , Embrião de Galinha , Galinhas , Cromatina/genética , Cromatina/metabolismo , Eritropoese/genética , Receptor 1 de Folato/metabolismo , Regulação da Expressão Gênica , Heterocromatina/genética , Heterocromatina/metabolismo
8.
Genes Dev ; 28(7): 723-34, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24696455

RESUMO

The multifunctional CCCTC-binding factor (CTCF) protein exhibits a broad range of functions, including that of insulator and higher-order chromatin organizer. We found that CTCF comprises a previously unrecognized region that is necessary and sufficient to bind RNA (RNA-binding region [RBR]) and is distinct from its DNA-binding domain. Depletion of cellular CTCF led to a decrease in not only levels of p53 mRNA, as expected, but also those of Wrap53 RNA, an antisense transcript originated from the p53 locus. PAR-CLIP-seq (photoactivatable ribonucleoside-enhanced cross-linking and immunoprecipitation [PAR-CLIP] combined with deep sequencing) analyses indicate that CTCF binds a multitude of transcripts genome-wide as well as to Wrap53 RNA. Apart from its established role at the p53 promoter, CTCF regulates p53 expression through its physical interaction with Wrap53 RNA. Cells harboring a CTCF mutant in its RBR exhibit a defective p53 response to DNA damage. Moreover, the RBR facilitates CTCF multimerization in an RNA-dependent manner, which may bear directly on its role in establishing higher-order chromatin structures in vivo.


Assuntos
Regulação da Expressão Gênica , Genes p53/genética , RNA/metabolismo , Proteínas Repressoras/metabolismo , Telomerase/metabolismo , Fator de Ligação a CCCTC , Linhagem Celular Tumoral , Dano ao DNA/genética , Humanos , Chaperonas Moleculares , Mutação , Ligação Proteica , Multimerização Proteica , Proteínas Repressoras/genética , Deleção de Sequência/genética
9.
BMC Cancer ; 11: 232, 2011 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-21663659

RESUMO

BACKGROUND: Long-term gene silencing throughout cell division is generally achieved by DNA methylation and other epigenetic processes. Aberrant DNA methylation is now widely recognized to be associated with cancer and other human diseases. Here we addressed the contribution of the multifunctional nuclear factor CTCF to the epigenetic regulation of the human retinoblastoma (Rb) gene promoter in different tumoral cell lines. METHODS: To assess the DNA methylation status of the Rb promoter, genomic DNA from stably transfected human erythroleukemic K562 cells expressing a GFP reporter transgene was transformed with sodium bisulfite, and then PCR-amplified with modified primers and sequenced. Single- and multi-copy integrants with the CTCF binding site mutated were isolated and characterized by Southern blotting. Silenced transgenes were reactivated using 5-aza-2'-deoxycytidine and Trichostatin-A, and their expression was monitored by fluorescent cytometry. Rb gene expression and protein abundance were assessed by RT-PCR and Western blotting in three different glioma cell lines, and DNA methylation of the promoter region was determined by sodium bisulfite sequencing, together with CTCF dissociation and methyl-CpG-binding protein incorporation by chromatin immunoprecipitation assays. RESULTS: We found that the inability of CTCF to bind to the Rb promoter causes a dramatic loss of gene expression and a progressive gain of DNA methylation. CONCLUSIONS: This study indicates that CTCF plays an important role in maintaining the Rb promoter in an optimal chromatin configuration. The absence of CTCF induces a rapid epigenetic silencing through a progressive gain of DNA methylation. Consequently, CTCF can now be seen as one of the epigenetic components that allows the proper configuration of tumor suppressor gene promoters. Its aberrant dissociation can then predispose key genes in cancer cells to acquire DNA methylation and epigenetic silencing.


Assuntos
Metilação de DNA/fisiologia , Genes do Retinoblastoma , Regiões Promotoras Genéticas/genética , Proteínas Repressoras/fisiologia , Azacitidina/análogos & derivados , Azacitidina/farmacologia , Sítios de Ligação , Fator de Ligação a CCCTC , Linhagem Celular Tumoral , Metilação de DNA/genética , DNA de Neoplasias/química , DNA de Neoplasias/genética , Decitabina , Regulação para Baixo/genética , Genes Reporter , Glioma/patologia , Células HeLa , Humanos , Ácidos Hidroxâmicos/farmacologia , Células K562/química , Mutação , Conformação de Ácido Nucleico , Proteínas Repressoras/deficiência , Proteínas Repressoras/genética , Análise de Sequência de DNA , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA