Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(7)2023 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-37047613

RESUMO

Curcumin shows anti-inflammatory activity, and it has been widely investigated for neurodegenerative diseases, adjuvant treatment in AIDS and antitumor activity against different tumors, among other activities. The goal of this work was to evaluate the capacity of curcumin and its derivatives (bisdemethoxycurcumin and bisdemethylcurcumin) in preventing the irritant effects of topically applied xylol and to assess the intrinsic capacity of curcuminoids in permeating human skin by ex vivo permeation tests. Its secondary goal was to validate an HPLC method to simultaneously determine the curcuminoids in the samples from the ex vivo permeation studies and drug extraction from the skin. Curcuminoid quantification was performed using an RP-C18 column, at isocratic conditions of elution and a detection wavelength of 265 nm. The method was specific with a suitable peak resolution, as well as linear, precise, and accurate in the range of 0.195-3.125 µg/mL for the three curcuminoids. Bisdemethylcurcumin showed the greatest permeation through the human skin, and it was the curcuminoid that was most retained within the human skin. The anti-inflammatory activity of the curcuminoids was evaluated in vivo using a xylol-induced inflammation model in rats. Histological studies were performed to observe any changes in morphology at the microscopic level, and these three curcuminoids were found to be respectful within the skin structure. These results show that these three curcuminoids are suitable for anti-inflammatory formulations for dermal applications, and they can be properly quantified using HPLC-UV.


Assuntos
Curcumina , Humanos , Ratos , Animais , Curcumina/farmacologia , Curcumina/química , Cromatografia Líquida de Alta Pressão/métodos , Curcuma/química , Diarileptanoides , Anti-Inflamatórios/farmacologia
2.
Pharmaceutics ; 12(8)2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32752258

RESUMO

Bipyridinium salts, commonly known as viologens, are π-acceptor molecules that strongly interact with π-donor compounds, such as porphyrins or amino acids, leading their self-assembling. These properties have promoted us to functionalize polysilicon microparticles with bipyridinium salts for the encapsulation and release of π-donor compounds such as catecholamines and indolamines. In this work, the synthesis and characterization of four gemini-type amphiphilic bipyridinium salts (1·4PF6-4·4PF6), and their immobilization either non-covalently or covalently on polysilicon surfaces and microparticles have been achieved. More importantly, they act as hosts for the subsequent incorporation of π-donor neurotransmitters such as dopamine, serotonin, adrenaline or noradrenaline. Ultraviolet-visible absorption and fluorescence spectroscopies and high-performance liquid chromatography were used to detect the formation of the complex in solution. The immobilization of bipyridinium salts and neurotransmitter incorporation on polysilicon surfaces was corroborated by contact angle measurements. The reduction in the bipyridinium moiety and the subsequent release of the neurotransmitter was achieved using ascorbic acid, or Vitamin C, as a triggering agent. Quantification of neurotransmitter encapsulated and released from the microparticles was performed using high-performance liquid chromatography. The cytotoxicity and genotoxicity studies of the bipyridinium salt 1·4PF6, which was selected for the non-covalent functionalization of the microparticles, demonstrated its low toxicity in the mouse fibroblast cell line (3T3/NIH), the human liver carcinoma cell line (HepG2) and the human epithelial colorectal adenocarcinoma cell line (Caco-2).

3.
Nanoscale ; 8(16): 8773-83, 2016 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-27064355

RESUMO

The development of micro- and nanosystems for their use in biomedicine is a continuously growing field. One of the major goals of such platforms is to combine multiple functions in a single entity. However, achieving the design of an efficient and safe micro- or nanoplatform has shown to be strongly influenced by its interaction with the biological systems, where particle features or cell types play a critical role. In this work, the feasibility of using multi-material pSi-Cr-Au intracellular chips (MMICCs) for multifunctional applications by characterizing their interactions with two different cell lines, one tumorigenic and one non-tumorigenic, in terms of biocompatibility, internalization and intracellular fate, has been explored. Moreover, the impact of MMICCs on the induction of an inflammatory response has been assessed by evaluating TNFα, IL1b, IL6, and IL10 human inflammatory cytokines secretion by macrophages. Results show that MMICCs are biocompatible and their internalization efficiency is strongly dependent on the cell type. Finally as a proof-of-concept, MMICCs have been dually functionalized with transferrin and pHrodo™ Red, SE to target cancer cells and detect intracellular pH, respectively. In conclusion, MMICCs can be used as multi-functional devices due to their high biocompatibility, non-inflammatory properties and the ability of developing multiple functions.


Assuntos
Cromo/química , Ouro/química , Nanoestruturas/química , Silício/química , Adesão Celular/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Citocinas/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Nanomedicina , Nanoestruturas/toxicidade , Nanoestruturas/ultraestrutura , Nanotecnologia , Receptores da Transferrina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA