Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Curr Top Med Chem ; 23(1): 62-75, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35240960

RESUMO

BACKGROUND: Herein, molecular docking approaches and DFT ab initio simulations were combined for the first time, to study the key interactions of cyclodextrins (CDs: α-CD, ß-CD, and γ-CD) family with potential pharmacological relevance and the multidrug resistance P-gp protein toward efficient drug-delivery applications. The treatment of neurological disorders and cancer therapy where the multiple drug-resistance phenomenon mediated by the P-gp protein constitutes the fundamental cause of unsuccessful therapies. OBJECTIVES: To understand more about the CD docking mechanism and the P-gp. METHODS: In order to achieve the main goal, the computational docking process was used. The observed docking-mechanism of the CDs on the P-gp was fundamentally based on hybrid backbone/side-chain hydrophobic interactions,and also hybrid electrostatic/side-chain interactions of the CD-ligands' OHmotifs with acceptor and donor characteristics, which might theoretically cause local perturbations in the TMD/P-gp inter-residues network, influencing ligand extrusion through the blood-brain barrier. P-gp residues were conformationally favored. Despite the structural differences, all the cyclodextrins exhibit very close Gibbs free binding energy values (or affinity) by the P-gp binding site (transmembrane domains - TMDs). RESULT: The obtained theoretical docking-mechanism of the CDs on the P-gp was fundamentally based on hybrid backbone/side-chain hydrophobic interactions, and also hybrid electrostatic/side-chain interactions of the OH-motifs of the CD-ligands with acceptor and donor properties which theoretically could induce allosteric local-perturbations in the TMDs-inter-residues network of P-gp modulating to the CD-ligand extrusion from the blood-brain-barrier (or cancer cells). CONCLUSION: Finally, these theoretical results open new horizons for evaluating new nanotherapeutic drugs with potential pharmacological relevance for efficient drug-delivery applications and precision nanomedicine.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP , Simulação por Computador , Ciclodextrinas , Humanos , Subfamília B de Transportador de Cassetes de Ligação de ATP/química , Sítios de Ligação , Ciclodextrinas/química , Sistemas de Liberação de Medicamentos , Resistência a Múltiplos Medicamentos , Ligantes , Simulação de Acoplamento Molecular
2.
Biotechnol Appl Biochem ; 69(2): 479-491, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33580532

RESUMO

Our novel strategy for the rational design of immobilized derivatives (RDID) is directed to predict the behavior of the protein immobilized derivative before its synthesis, by the usage of mathematic algorithms and bioinformatics tools. However, this approach needs to be validated for each target enzyme. The objective of this work was to validate the RDID strategy for covalent immobilization of the enzyme laccase from Trametes maxima MUCL 44155 on glyoxyl- and monoaminoethyl-N-aminoethyl (MANA)-Sepharose CL 4B supports. Protein surface clusters, more probable configurations of the protein-supports systems at immobilization pHs, immobilized enzyme activity, and protein load were predicted by RDID1.0 software. Afterward, immobilization was performed and predictions were experimentally confirmed. As a result, the laccase-MANA-Sepharose CL 4B immobilized derivative is better than laccase-glyoxyl-Sepharose CL 4B in predicted immobilized derivative activity (63.6% vs. 29.5%). Activity prediction was confirmed by an experimentally expressed enzymatic activity of 68%, using 2,6-dimethoxyphenol as substrate. Experimental maximum protein load matches the estimated value (11.2 ± 1.3 vs. 12.1 protein mg/support mL). The laccase-MANA-Sepharose CL 4B biocatalyst has a high specificity for the acid blue 62 colorant. The results obtained in this work suggest the possibility of using this biocatalyst for wastewater treatment.


Assuntos
Lacase , Trametes , Estabilidade Enzimática , Enzimas Imobilizadas/metabolismo , Concentração de Íons de Hidrogênio , Lacase/metabolismo , Polyporaceae , Sefarose/análogos & derivados
3.
Curr Top Med Chem ; 21(9): 839, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34086546

RESUMO

Due to an oversight of the publisher, Page no 2310 was missing in the published paper and page no 2311 repeated twice in the article entitled "Computational Modeling of Environmental Co-exposure on Oil-Derived Hydrocarbon Overload by Using Substrate-Specific Transport Protein (TodX) with Graphene Nanostructures, 2020, 20(25), 2308-2325 [1]. The page no 2310 is added in the article and the repetition of page no 2311 is corrected. The original article can be found online at https://doi.org/10.2174/1568026620666200820145412.


Assuntos
Simulação por Computador , Exposição Ambiental , Grafite/química , Hidrocarbonetos/química , Transporte Biológico
4.
Molecules ; 25(22)2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33228181

RESUMO

In this work, one of the most prevalent polypharmacology drug-drug interaction events that occurs between two widely used beta-blocker drugs-i.e., acebutolol and propranolol-with the most abundant blood plasma fibrinogen protein was evaluated. Towards that end, molecular docking and Density Functional Theory (DFT) calculations were used as complementary tools. A fibrinogen crystallographic validation for the three best ranked binding-sites shows 100% of conformationally favored residues with total absence of restricted flexibility. From those three sites, results on both the binding-site druggability and ligand transport analysis-based free energy trajectories pointed out the most preferred biophysical environment site for drug-drug interactions. Furthermore, the total affinity for the stabilization of the drug-drug complexes was mostly influenced by steric energy contributions, based mainly on multiple hydrophobic contacts with critical residues (THR22: P and SER50: Q) in such best-ranked site. Additionally, the DFT calculations revealed that the beta-blocker drug-drug complexes have a spontaneous thermodynamic stabilization following the same affinity order obtained in the docking simulations, without covalent-bond formation between both interacting beta-blockers in the best-ranked site. Lastly, experimental ultrasound density and velocity measurements were performed and allowed us to validate and corroborate the computational obtained results.


Assuntos
Antagonistas Adrenérgicos beta/farmacologia , Fibrinogênio/metabolismo , Simulação de Acoplamento Molecular , Sítios de Ligação , Teoria da Densidade Funcional , Interações Medicamentosas , Fibrinogênio/química , Ligantes , Conformação Molecular , Reprodutibilidade dos Testes , Termodinâmica
5.
Curr Top Med Chem ; 20(25): 2308-2325, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32819247

RESUMO

BACKGROUND: Bioremediation is a biotechnology field that uses living organisms to remove contaminants from soil and water; therefore, they could be used to treat oil spills from the environment. METHODS: Herein, we present a new mechanistic approach combining Molecular Docking Simulation and Density Functional Theory to modeling the bioremediation-based nanointeractions of a heterogeneous mixture of oil-derived hydrocarbons by using pristine and oxidized graphene nanostructures and the substrate-specific transport protein (TodX) from Pseudomonas putida. RESULTS: The theoretical evidences pointing that the binding interactions are mainly based on noncovalent bonds characteristic of physical adsorption mechanism mimicking the "Trojan-horse effect". CONCLUSION: These results open new horizons to improve bioremediation strategies in over-saturation conditions against oil-spills and expanding the use of nanotechnologies in the context of environmental modeling health and safety.


Assuntos
Proteínas de Bactérias/química , Teoria da Densidade Funcional , Exposição Ambiental/análise , Grafite/química , Hidrocarbonetos/isolamento & purificação , Proteínas de Membrana/química , Simulação de Acoplamento Molecular , Nanoestruturas/química , Adsorção , Hidrocarbonetos/química , Óleos/química
6.
Toxicol In Vitro ; 63: 104737, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31756542

RESUMO

Rapanone is a natural occurring benzoquinone with several biological effects including unclear cytotoxic mechanisms. Here we addressed if mitochondria are involved in the cytotoxicity of rapanone towards cancer cells by employing hepatic carcinoma (HepG2) cells and isolated rat liver mitochondria. In the HepG2, rapanone (20-40 µM) induced a concentration-dependent mitochondrial membrane potential dissipation, ATP depletion, hydrogen peroxide generation and, phosphatidyl serine externalization; the latter being indicative of apoptosis induction. Rapanone toxicity towards primary rats hepatocytes (IC50 = 35.58 ± 1.50 µM) was lower than that found for HepG2 cells (IC50 = 27.89 ± 0.75 µM). Loading of isolated mitochondria with rapanone (5-20 µM) caused a concentration-dependent inhibition of phosphorylating and uncoupled respirations supported by complex I (glutamate and malate) or the complex II (succinate) substrates, being the latter eliminated by complex IV substrate (TMPD/ascorbate). Rapanone also dissipated mitochondrial membrane potential, depleted ATP content, released Ca2+ from Ca2+-loaded mitochondria, increased ROS generation, cytochrome c release and membrane fluidity. Further analysis demonstrated that rapanone prevented the cytochrome c reduction in the presence of decylbenzilquinol, identifying complex III as the site of its inhibitory action. Computational docking results of rapanone to cytochrome bc1 (Cyt bc1) complex from the human sources found spontaneous thermodynamic processes for the quinone-Qo and Qi binding interactions, supporting the experimental in vitro assays. Collectively, these observations suggest that rapanone impairs mitochondrial respiration by inhibiting electron transport chain at Complex III and promotes mitochondrial dysfunction. This property is potentially involved in rapanone toxicity on cancer cells.


Assuntos
Antineoplásicos/farmacologia , Benzoquinonas/farmacologia , Mitocôndrias Hepáticas/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Animais , Morte Celular/efeitos dos fármacos , Respiração Celular/efeitos dos fármacos , Células Hep G2 , Humanos , Peróxido de Hidrogênio/metabolismo , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias Hepáticas/metabolismo , Ratos Wistar
7.
Curr Top Med Chem ; 19(11): 914-926, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31072293

RESUMO

BACKGROUND: PIM-1 is a kinase which has been related to the oncogenic processes like cell survival, proliferation, and multidrug resistance (MDR). This kinase is known for its ability to phosphorylate the main extrusion pump (ABCB1) related to the MDR phenotype. OBJECTIVE: In the present work, we tested a new mechanistic insight on the AZD1208 (PIM-1 specific inhibitor) under interaction with chemotherapy agents such as Daunorubicin (DNR) and Vincristine (VCR). MATERIALS AND METHODS: In order to verify a potential cytotoxic effect based on pharmacological synergism, two MDR cell lines were used: Lucena (resistant to VCR) and FEPS (resistant to DNR), both derived from the K562 non-MDR cell line, by MTT analyses. The activity of Pgp was ascertained by measuring accumulation and the directional flux of Rh123. Furthermore, we performed a molecular docking simulation to delve into the molecular mechanism of PIM-1 alone, and combined with chemotherapeutic agents (VCR and DNR). RESULTS: Our in vitro results have shown that AZD1208 alone decreases cell viability of MDR cells. However, co-exposure of AZD1208 and DNR or VCR reverses this effect. When we analyzed the ABCB1 activity AZD1208 alone was not able to affect the pump extrusion. Differently, co-exposure of AZD1208 and DNR or VCR impaired ABCB1 activity, which could be explained by compensatory expression of abcb1 or other extrusion pumps not analyzed here. Docking analysis showed that AZD1208 is capable of performing hydrophobic interactions with PIM-1 ATP- binding-site residues with stronger interaction-based negative free energy (FEB, kcal/mol) than the ATP itself, mimicking an ATP-competitive inhibitory pattern of interaction. On the same way, VCR and DNR may theoretically interact at the same biophysical environment of AZD1208 and also compete with ATP by the PIM-1 active site. These evidences suggest that AZD1208 may induce pharmacodynamic interaction with VCR and DNR, weakening its cytotoxic potential in the ATP-binding site from PIM-1 observed in the in vitro experiments. CONCLUSION: Finally, the current results could have a pre-clinical relevance potential in the rational polypharmacology strategies to prevent multiple-drugs resistance in human leukemia cancer therapy.


Assuntos
Compostos de Bifenilo/farmacologia , Resistência a Múltiplos Medicamentos , Leucemia Eritroblástica Aguda/tratamento farmacológico , Leucemia Eritroblástica Aguda/enzimologia , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-pim-1/antagonistas & inibidores , Tiazolidinas/farmacologia , Compostos de Bifenilo/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Leucemia Eritroblástica Aguda/patologia , Conformação Molecular , Inibidores de Proteínas Quinases/química , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Tiazolidinas/química , Células Tumorais Cultivadas
8.
Toxicology ; 411: 81-92, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30339824

RESUMO

In the present study, the molecular docking mechanism based on pharmacodynamic interactions between the ligands AZD1208 and recognized chemotherapy agents (Vincristine and Daunorubicin) with human ATP-binding cassette (ABC) transporters (ABCB1) was investigated. For the first time, were combined an in silico approaches like molecular docking and ab initio computational simulation based on Density Functional Theory (DFT) to explain the drug-drug interaction mechanism of aforementioned chemotherapy ligands with the transmembrane ligand extrusion binding domains (TMDs) of ABCB1. In this regard, the theoretical pharmacodynamic interactions were characterized by using the Gibbs free energy (FEB, kcal/mol) from the best ABCB1-ligand docking complexes. The molecular docking results pointing that for the three chemotherapy ABCB1-ligand complexes are mainly based in non-covalent hydrophobic and hydrogen-bond interactions showing a similar toxicodynamic behavior in terms of strength of interaction (FEB, kcal/mol) and very close free binding energies when compared with the FEB-values of the ABCB1 specific-inhibitor (Rhodamine B) = -6.0 kcal/mol used as theoretical docking control to compare with FEB (AZD1208-ABCB1) ∼ FEB (Vincristine-ABCB1) ∼ FEB (Daunorubicin-ABCB1) -6.2 kcal/mol as average. Ramachandran plot suggests that the 3D-crystallographic structure from ABCB1 transporter can be efficiently-modeled with conformationally-favored Psi versus Phi dihedral angles for all key TMDs-residues. Though, the results of DFT-simulation corroborate the existence of drug-drug interaction between (AZD1208/Vincristine) > (AZD1208/Daunorubicin). These theoretical pieces of evidence have preclinical relevance potential in the design of the new drugs to understand the polypharmacology influence in the molecular mechanism of multiple-drugs resistance, contributing with a higher success in chemotherapy and prognosis of cancer patients.


Assuntos
Antibióticos Antineoplásicos/toxicidade , Antineoplásicos Fitogênicos/toxicidade , Compostos de Bifenilo/toxicidade , Daunorrubicina/toxicidade , Inibidores de Proteínas Quinases/toxicidade , Transporte Proteico/efeitos dos fármacos , Tiazolidinas/toxicidade , Vincristina/toxicidade , Subfamília B de Transportador de Cassetes de Ligação de ATP/antagonistas & inibidores , Subfamília B de Transportador de Cassetes de Ligação de ATP/efeitos dos fármacos , Sítios de Ligação/efeitos dos fármacos , Linhagem Celular Tumoral , Teoria da Densidade Funcional , Interações Medicamentosas , Humanos , Ligantes , Conformação Molecular , Simulação de Acoplamento Molecular
9.
J Chem Inf Model ; 59(1): 86-97, 2019 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-30408958

RESUMO

Recently, it has been suggested that the mitochondrial oligomycin A-sensitive F0-ATPase subunit is an uncoupling channel linked to apoptotic cell death, and as such, the toxicological inhibition of mitochondrial F0-ATP hydrolase can be an interesting mitotoxicity-based therapy under pathological conditions. In addition, carbon nanotubes (CNTs) have been shown to offer higher selectivity like mitotoxic-targeting nanoparticles. In this work, linear and nonlinear classification algorithms on structure-toxicity relationships with artificial neural network (ANN) models were set up using the fractal dimensions calculated from CNTs as a source of supramolecular chemical information. The potential ability of CNT-family members to induce mitochondrial toxicity-based inhibition of the mitochondrial H+-F0F1-ATPase from in vitro assays was predicted. The attained experimental data suggest that CNTs have a strong ability to inhibit the F0-ATPase active-binding site following the order oxidized-CNT (CNT-COOH > CNT-OH) > pristine-CNT and mimicking the oligomycin A mitotoxicity behavior. Meanwhile, the performance of the ANN models was found to be improved by including different nonlinear combinations of the calculated fractal scanning electron microscopy (SEM) nanodescriptors, leading to models with excellent internal accuracy and predictivity on external data to classify correctly CNT-mitotoxic and nonmitotoxic with specificity (Sp > 98.9%) and sensitivity (Sn > 99.0%) from ANN models compared with linear approaches (LNN) with Sp ≈ Sn > 95.5%. Finally, the present study can contribute toward the rational design of carbon nanomaterials and opens new opportunities toward mitochondrial nanotoxicology-based in silico models.


Assuntos
Simulação por Computador , Inibidores Enzimáticos/química , Mitocôndrias/enzimologia , Nanotubos de Carbono/química , ATPases Translocadoras de Prótons/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Nanotubos de Carbono/toxicidade , Redes Neurais de Computação , Relação Estrutura-Atividade
10.
J Chem Inf Model ; 57(5): 1029-1044, 2017 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-28414908

RESUMO

The study of selective toxicity of carbon nanotubes (CNTs) on mitochondria (CNT-mitotoxicity) is of major interest for future biomedical applications. In the current work, the mitochondrial oxygen consumption (E3) is measured under three experimental conditions by exposure to pristine and oxidized CNTs (hydroxylated and carboxylated). Respiratory functional assays showed that the information on the CNT Raman spectroscopy could be useful to predict structural parameters of mitotoxicity induced by CNTs. The in vitro functional assays show that the mitochondrial oxidative phosphorylation by ATP-synthase (or state V3 of respiration) was not perturbed in isolated rat-liver mitochondria. For the first time a star graph (SG) transform of the CNT Raman spectra is proposed in order to obtain the raw information for a nano-QSPR model. Box-Jenkins and perturbation theory operators are used for the SG Shannon entropies. A modified RRegrs methodology is employed to test four regression methods such as multiple linear regression (LM), partial least squares regression (PLS), neural networks regression (NN), and random forest (RF). RF provides the best models to predict the mitochondrial oxygen consumption in the presence of specific CNTs with R2 of 0.998-0.999 and RMSE of 0.0068-0.0133 (training and test subsets). This work is aimed at demonstrating that the SG transform of Raman spectra is useful to encode CNT information, similarly to the SG transform of the blood proteome spectra in cancer or electroencephalograms in epilepsy and also as a prospective chemoinformatics tool for nanorisk assessment. All data files and R object models are available at https://dx.doi.org/10.6084/m9.figshare.3472349 .


Assuntos
Mitocôndrias/efeitos dos fármacos , Modelos Biológicos , Nanotubos de Carbono/toxicidade , Análise Espectral Raman , Animais , Entropia , Modelos Lineares , Masculino , Mitocôndrias/ultraestrutura , Consumo de Oxigênio , Ratos , Ratos Wistar
11.
Eur J Pharmacol ; 726: 57-65, 2014 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-24462350

RESUMO

The ischemic stroke cascade is composed of several pathophysiological events, providing multiple targets for pharmacological intervention. JM-20 (3-ethoxycarbonyl-2-methyl-4-(2-nitrophenyl)-4,11-dihydro-1H-pyrido[2,3-b][1,5]benzodiazepine) is a novel hybrid molecule, in which a benzodiazepine portion is covalently linked to a dihydropyridine ring, forming a new chemical entity with potential multisite neuroprotective activity. In the present study, JM-20 prevented PC-12 cell death induced either by glutamate, hydrogen peroxide or KCN-mediated chemical hypoxia. This molecule also protected cerebellar granule neurons from glutamate or glutamate plus pentylenetetrazole-induced damage at very low micromolar concentrations. In rat liver mitochondria, JM-20, at low micromolar concentrations, prevented the Ca2+-induced mitochondrial permeability transition, as assessed by mitochondrial swelling, membrane potential dissipation and organelle release of the pro-apoptotic protein cytochrome c. JM-20 also inhibited the mitochondrial hydrolytic activity of F1F0-ATP synthase and Ca2+ influx. Therefore, JM-20 may be a multi-target neuroprotective agent, promoting reductions in neuronal excitotoxic injury and the protection of the mitochondria from Ca2+-induced impairment as well as the preservation of cellular energy balance.


Assuntos
Benzodiazepinas/química , Benzodiazepinas/farmacologia , Isquemia Encefálica/patologia , Di-Hidropiridinas/química , Mitocôndrias/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/patologia , Niacina/análogos & derivados , Animais , Isquemia Encefálica/complicações , Cálcio/metabolismo , Morte Celular/efeitos dos fármacos , Cerebelo/citologia , Citocromos c/metabolismo , Ácido Glutâmico/farmacologia , Peróxido de Hidrogênio/farmacologia , Hidrólise/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/metabolismo , ATPases Mitocondriais Próton-Translocadoras/antagonistas & inibidores , Dilatação Mitocondrial/efeitos dos fármacos , Neurônios/metabolismo , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacologia , Niacina/química , Niacina/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Células PC12 , Pentilenotetrazol/farmacologia , Fosfatos/metabolismo , Cianeto de Potássio/farmacologia , Ratos , Acidente Vascular Cerebral/complicações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA