Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Clin Transl Radiat Oncol ; 41: 100640, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37251617

RESUMO

Background and purpose: Radiation-induced toxicities are common adverse events in lung cancer (LC) patients undergoing radiotherapy (RT). An accurate prediction of these adverse events might facilitate an informed and shared decision-making process between patient and radiation oncologist with a clearer view of life-balance implications in treatment choices. This work provides a benchmark of machine learning (ML) approaches to predict radiation-induced toxicities in LC patients built upon a real-world health dataset based on a generalizable methodology for their implementation and external validation. Materials and Methods: Ten feature selection (FS) methods were combined with five ML-based classifiers to predict six RT-induced toxicities (acute esophagitis, acute cough, acute dyspnea, acute pneumonitis, chronic dyspnea, and chronic pneumonitis). A real-world health dataset (RWHD) built from 875 consecutive LC patients was used to train and validate the resulting 300 predictive models. Internal and external accuracy was calculated in terms of AUC per clinical endpoint, FS method, and ML-based classifier under analysis. Results: Best performing predictive models obtained per clinical endpoint achieved comparable performances to methods from state-of-the-art at internal validation (AUC ≥ 0.81 in all cases) and at external validation (AUC ≥ 0.73 in 5 out of 6 cases). Conclusion: A benchmark of 300 different ML-based approaches has been tested against a RWHD achieving satisfactory results following a generalizable methodology. The outcomes suggest potential relationships between underrecognized clinical factors and the onset of acute esophagitis or chronic dyspnea, thus demonstrating the potential that ML-based approaches have to generate novel data-driven hypotheses in the field.

2.
Int J Mol Sci ; 24(2)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36674902

RESUMO

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological disease that arises from the oncogenic transformation of developing T cells during T-lymphopoiesis. Although T-ALL prognosis has improved markedly in recent years, relapsing and refractory patients with dismal outcomes still represent a major clinical issue. Consequently, understanding the pathological mechanisms that lead to the appearance of this malignancy and developing novel and more effective targeted therapies is an urgent need. Since the discovery in 2004 that a major proportion of T-ALL patients carry activating mutations that turn NOTCH1 into an oncogene, great efforts have been made to decipher the mechanisms underlying constitutive NOTCH1 activation, with the aim of understanding how NOTCH1 dysregulation converts the physiological NOTCH1-dependent T-cell developmental program into a pathological T-cell transformation process. Several molecular players have so far been shown to cooperate with NOTCH1 in this oncogenic process, and different therapeutic strategies have been developed to specifically target NOTCH1-dependent T-ALLs. Here, we comprehensively analyze the molecular bases of the cross-talk between NOTCH1 and cooperating partners critically involved in the generation and/or maintenance and progression of T-ALL and discuss novel opportunities and therapeutic approaches that current knowledge may open for future treatment of T-ALL patients.


Assuntos
Leucemia-Linfoma Linfoblástico de Células T Precursoras , Humanos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Receptor Notch1/genética , Transdução de Sinais/genética , Mutação
3.
Environ Sci Pollut Res Int ; 28(23): 29781-29794, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33566296

RESUMO

The restrictions imposed on the use of formaldehyde in wood panel adhesives have been the driving force behind the development of formaldehyde-free resins for the manufacture of wood products. Considering as a boundary condition the idea that the use of fossil-based raw materials should be replaced by biological options, there is growing interest in the environmental assessment of different alternatives for soy-based adhesives, as possible options to replace commonly used synthetic resins. This report includes the environmental profiles of soy-based adhesives taking into account the life cycle assessment (LCA) methodology. In addition, in order to increase their potential to replace synthetic resins, a sensitivity analysis of the main contributors to environmental damage was performed, thus giving an open guide for further research and improvement. This study aims to provide innovative alternatives and new trends in the field of environmentally friendly bio-adhesives for the wood panel industry.


Assuntos
Adesivos , Formaldeído , Indústrias , Madeira
4.
Methods Mol Biol ; 2185: 215-239, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33165851

RESUMO

Intense chemotherapy regimens of patients diagnosed with T cell acute lymphoblastic leukemia (T-ALL) have proved successful for improving patient's overall survival, especially in children. But still T-ALL treatment remains challenging, since side effects of chemotherapeutic drugs often worsen patient's quality of life, and relapse rates remain significant. Hence, the availability of experimental animal models capable of recapitulating the biology of human T-ALL is obligatory as a critical tool to explore novel promising therapies directed against specific targets that have been previously validated in in vitro assays. For this purpose, patient-derived xenografts (PDX) of primary human T-ALL are currently of great interest as preclinical models for novel therapeutic strategies toward transition into clinical trials. In this chapter, we describe the lab workflow to perform PDX assays, from the initial processing of patient T-ALL samples, genetic in vitro modifications of leukemic cells by lentiviral transduction, inoculation routes, monitoring for disease development, and mouse organ examination, to administration of several treatments.


Assuntos
Transplante de Neoplasias , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Animais , Xenoenxertos , Humanos , Camundongos SCID , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/terapia , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Int J Mol Sci ; 21(20)2020 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-33081391

RESUMO

T-cell acute lymphoblastic leukemia (T-ALL), a T-cell malignant disease that mainly affects children, is still a medical challenge, especially for refractory patients for whom therapeutic options are scarce. Recent advances in immunotherapy for B-cell malignancies based on increasingly efficacious monoclonal antibodies (mAbs) and chimeric antigen receptors (CARs) have been encouraging for non-responding or relapsing patients suffering from other aggressive cancers like T-ALL. However, secondary life-threatening T-cell immunodeficiency due to shared expression of targeted antigens by healthy and malignant T cells is a main drawback of mAb-or CAR-based immunotherapies for T-ALL and other T-cell malignancies. This review provides a comprehensive update on the different immunotherapeutic strategies that are being currently applied to T-ALL. We highlight recent progress on the identification of new potential targets showing promising preclinical results and discuss current challenges and opportunities for developing novel safe and efficacious immunotherapies for T-ALL.


Assuntos
Imunoterapia Adotiva/métodos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/terapia , Animais , Engenharia Celular/métodos , Humanos , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Linfócitos T/transplante
7.
Cancers (Basel) ; 12(1)2019 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-31861681

RESUMO

Increasing evidences show that the ATPase Inhibitory Factor 1 (IF1), the physiological inhibitor of the ATP synthase, is overexpressed in a large number of carcinomas contributing to metabolic reprogramming and cancer progression. Herein, we show that in contrast to the findings in other carcinomas, the overexpression of IF1 in a cohort of colorectal carcinomas (CRC) predicts less chances of disease recurrence, IF1 being an independent predictor of survival. Bioinformatic and gene expression analyses of the transcriptome of colon cancer cells with differential expression of IF1 indicate that cells overexpressing IF1 display a less aggressive behavior than IF1 silenced (shIF1) cells. Proteomic and functional in vitro migration and invasion assays confirmed the higher tumorigenic potential of shIF1 cells. Moreover, shIF1 cells have increased in vivo metastatic potential. The higher metastatic potential of shIF1 cells relies on increased cFLIP-mediated resistance to undergo anoikis after cell detachment. Furthermore, tumor spheroids of shIF1 cells have an increased ability to escape from immune surveillance by NK cells. Altogether, the results reveal that the overexpression of IF1 acts as a tumor suppressor in CRC with an important anti-metastatic role, thus supporting IF1 as a potential therapeutic target in CRC.

8.
Blood ; 134(24): 2171-2182, 2019 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-31530562

RESUMO

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy resulting from the dysregulation of signaling pathways that control intrathymic T-cell development. Relapse rates are still significant, and prognosis is particularly bleak for relapsed patients. Therefore, development of novel therapies specifically targeting pathways controlling leukemia-initiating cell (LIC) activity is mandatory for fighting refractory T-ALL. The interleukin-7 receptor (IL-7R) is a crucial T-cell developmental pathway that is commonly expressed in T-ALL and has been implicated in leukemia progression; however, the significance of IL-7R/IL-7 signaling in T-ALL pathogenesis and its contribution to disease relapse remain unknown. To directly explore whether IL-7R targeting may be therapeutically efficient against T-ALL relapse, we focused on a known Notch1-induced T-ALL model, because a majority of T-ALL patients harbor activating mutations in NOTCH1, which is a transcriptional regulator of IL-7R expression. Using loss-of-function approaches, we show that Il7r-deficient, but not wild-type, mouse hematopoietic progenitors transduced with constitutively active Notch1 failed to generate leukemia upon transplantation into immunodeficient mice, thus providing formal evidence that IL-7R function is essential for Notch1-induced T-cell leukemogenesis. Moreover, we demonstrate that IL-7R expression is an early functional biomarker of T-ALL cells with LIC potential and report that impaired IL-7R signaling hampers engraftment and progression of patient-derived T-ALL xenografts. Notably, we show that IL-7R-dependent LIC activity and leukemia progression can be extended to human B-cell acute lymphoblastic leukemia (B-ALL). These results have important therapeutic implications, highlighting the relevance that targeting normal IL-7R signaling may have in future therapeutic interventions, particularly for preventing T-ALL (and B-ALL) relapse.


Assuntos
Suscetibilidade a Doenças , Células-Tronco Neoplásicas/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/etiologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Receptores de Interleucina-7/metabolismo , Animais , Antineoplásicos Imunológicos/farmacologia , Antineoplásicos Imunológicos/uso terapêutico , Biomarcadores , Linhagem Celular Tumoral , Modelos Animais de Doenças , Expressão Gênica , Células-Tronco Hematopoéticas/metabolismo , Humanos , Camundongos , Células-Tronco Neoplásicas/patologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Receptor Notch1/genética , Receptor Notch1/metabolismo , Receptores de Interleucina-7/genética , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Stud Health Technol Inform ; 258: 253-254, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30942763

RESUMO

This work addresses a scoping review of Feature Selection (FS) methods applied to a Lung Cancer dataset to elucidate parameters' relevance when predicting radiotherapy (RT) induced toxicity. Subsetting-based and Ranking-based FS methods were implemented along with 4 advanced classifiers to predict the onset of RT-induced acute esophagitis, cough, pneumonitis and dyspnea. Their prediction performance was measured in terms of the AUC for each model to find the best FS.


Assuntos
Neoplasias Pulmonares , Lesões por Radiação , Radioterapia , Mineração de Dados , Transtornos de Deglutição/etiologia , Dispneia/etiologia , Esofagite/etiologia , Previsões , Humanos , Neoplasias Pulmonares/radioterapia , Pneumonia/etiologia , Radioterapia/efeitos adversos
10.
Blood ; 133(21): 2291-2304, 2019 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-30796021

RESUMO

Relapsed/refractory T-cell acute lymphoblastic leukemia (T-ALL) has a dismal outcome, and no effective targeted immunotherapies for T-ALL exist. The extension of chimeric antigen receptor (CAR) T cells (CARTs) to T-ALL remains challenging because the shared expression of target antigens between CARTs and T-ALL blasts leads to CART fratricide. CD1a is exclusively expressed in cortical T-ALL (coT-ALL), a major subset of T-ALL, and retained at relapse. This article reports that the expression of CD1a is mainly restricted to developing cortical thymocytes, and neither CD34+ progenitors nor T cells express CD1a during ontogeny, confining the risk of on-target/off-tumor toxicity. We thus developed and preclinically validated a CD1a-specific CAR with robust and specific cytotoxicity in vitro and antileukemic activity in vivo in xenograft models of coT-ALL, using both cell lines and coT-ALL patient-derived primary blasts. CD1a-CARTs are fratricide resistant, persist long term in vivo (retaining antileukemic activity in re-challenge experiments), and respond to viral antigens. Our data support the therapeutic and safe use of fratricide-resistant CD1a-CARTs for relapsed/refractory coT-ALL.


Assuntos
Antígenos CD1/imunologia , Resistencia a Medicamentos Antineoplásicos/imunologia , Imunoterapia Adotiva , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Receptores de Antígenos Quiméricos/imunologia , Animais , Humanos , Células Jurkat , Camundongos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/imunologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/terapia , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Sci Total Environ ; 475: 71-82, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24419288

RESUMO

Crambe crambe is a Mediterranean marine sponge known to produce original natural substances belonging to two families of guanidine alkaloids, namely crambescins and crambescidins, which exhibit cytotoxic and antiviral activities. These compounds are therefore considered as potential anticancer drugs. The present study focuses on the environmental assessment of a novel in vivo process for the production of pure crambescin and crambescidin using sponge specimens cultured in aquarium. The assessment was performed following the ISO 14040 standard and extended from the production of the different mass and energy flows to the system to the growth of the sponge in indoor aquarium and further periodic extraction and purification of the bioactive compounds. According to the results, the two stages that have a remarkable contribution to all impact categories are the purification of the bioactive molecules followed by the maintenance of the sponge culture in the aquarium. Among the involved activities, the production of the chemicals (particularly methanol) together with the electricity requirements (especially due to the aquarium lighting) are responsible for up to 90% of the impact in most of the assessed categories. However, the contributions of other stages to the environmental burdens, such as the collection of sponges, considerably depend on the assumptions made during the inventory stage. The simulation of alternative scenarios has led to propose improvement alternatives that may allow significant reductions ranging from 20% to 70%, mainly thanks to the reduction of electricity requirements as well as the partial reuse of methanol.


Assuntos
Alcaloides/análise , Produtos Biológicos/análise , Conservação dos Recursos Naturais/métodos , Crambe (Esponja)/crescimento & desenvolvimento , Pesqueiros/métodos , Guanidinas/análise , Animais , Crambe (Esponja)/química
12.
Curr Top Microbiol Immunol ; 360: 47-73, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22695916

RESUMO

Notch receptors are master regulators of many aspects of development and tissue renewal in metazoans. Notch1 activation is essential for T-cell specification of bone marrow-derived multipotent progenitors that seed the thymus, and for proliferation and further progression of early thymocytes along the T-cell lineage. Deregulated activation of Notch1 significantly contributes to the generation of T-cell acute lymphoblastic leukaemia (T-ALL). In addition to Notch1 signals, survival and proliferation signals provided by the IL-7 receptor (IL-7R) are also required during thymopoiesis. Our understanding of the molecular mechanisms controlling stage-specific survival and proliferation signals provided by Notch1 and IL-7R has recently been improved by the discovery that the IL-7R is a transcriptional target of Notch1. Thus, Notch1 controls T-cell development, in part by regulating the stage- and lineage-specific expression of IL-7R. The finding that induction of IL-7R expression downstream of Notch1 also occurs in T-ALL highlights the important contribution that deregulated IL-7R expression and function may have in this pathology. Confirming this notion, oncogenic IL7R gain-of-function mutations have recently been identified in childhood T-ALL. Here we discuss the fundamental role of Notch1 and IL-7R signalling pathways in physiological and pathological T-cell development in mice and men, highlighting their close molecular underpinnings.


Assuntos
Células-Tronco Multipotentes/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Receptor Notch1/metabolismo , Receptores de Interleucina-7/metabolismo , Linfócitos T/metabolismo , Animais , Medula Óssea/metabolismo , Diferenciação Celular , Linhagem da Célula , Regulação da Expressão Gênica , Humanos , Camundongos , Células-Tronco Multipotentes/citologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Receptor Notch1/genética , Receptores de Interleucina-7/genética , Transdução de Sinais , Linfócitos T/citologia
13.
Nat Neurosci ; 14(5): 562-9, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21478884

RESUMO

It is well established that retinal neurogenesis in mouse embryos requires the activation of Notch signaling, but is independent of the Wnt signaling pathway. We found that genetic inactivation of Sfrp1 and Sfrp2, two postulated Wnt antagonists, perturbs retinal neurogenesis. In retinas from Sfrp1(-/-); Sfrp2(-/-) embryos, Notch signaling was transiently upregulated because Sfrps bind ADAM10 metalloprotease and downregulate its activity, an important step in Notch activation. The proteolysis of other ADAM10 substrates, including APP, was consistently altered in Sfrp mutants, whereas pharmacological inhibition of ADAM10 partially rescued the Sfrp1(-/-); Sfrp2(-/-) retinal phenotype. Conversely, ectopic Sfrp1 expression in the Drosophila wing imaginal disc prevented the expression of Notch targets, and this was restored by the coexpression of Kuzbanian, the Drosophila ADAM10 homolog. Together, these data indicate that Sfrps inhibit the ADAM10 metalloprotease, which might have important implications in pathological events, including cancer and Alzheimer's disease.


Assuntos
Proteínas ADAM/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Proteínas de Membrana/metabolismo , Proteínas de Membrana/fisiologia , Neurogênese/fisiologia , Retina/citologia , Proteína ADAM10 , Fatores Etários , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Bromodesoxiuridina/metabolismo , Células CHO , Caderinas/metabolismo , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Proliferação de Células/efeitos dos fármacos , Cricetinae , Cricetulus , Drosophila , Embrião de Mamíferos , Inibidores Enzimáticos/farmacologia , Olho/citologia , Olho/embriologia , Olho/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Peptídeos e Proteínas de Sinalização Intercelular/deficiência , Proteínas de Membrana/deficiência , Camundongos , Camundongos Knockout , Mutação/genética , Proteínas do Tecido Nervoso/metabolismo , Receptor Notch1/metabolismo , Retina/embriologia , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
14.
Nat Genet ; 42(4): 338-42, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20228800

RESUMO

Tumor suppressor genes on the X chromosome may skew the gender distribution of specific types of cancer. T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy with an increased incidence in males. In this study, we report the identification of inactivating mutations and deletions in the X-linked plant homeodomain finger 6 (PHF6) gene in 16% of pediatric and 38% of adult primary T-ALL samples. Notably, PHF6 mutations are almost exclusively found in T-ALL samples from male subjects. Mutational loss of PHF6 is importantly associated with leukemias driven by aberrant expression of the homeobox transcription factor oncogenes TLX1 and TLX3. Overall, these results identify PHF6 as a new X-linked tumor suppressor in T-ALL and point to a strong genetic interaction between PHF6 loss and aberrant expression of TLX transcription factors in the pathogenesis of this disease.


Assuntos
Proteínas de Transporte/genética , Cromossomos Humanos X , Genes Supressores de Tumor , Proteínas de Homeodomínio/genética , Proteínas Proto-Oncogênicas/genética , Adulto , Criança , Hibridização Genômica Comparativa , Variações do Número de Cópias de DNA , Feminino , Ligação Genética , Humanos , Masculino , Mutação , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Proteínas Repressoras
15.
J Exp Med ; 206(4): 779-91, 2009 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-19349467

RESUMO

Notch1 activation is essential for T-lineage specification of lymphomyeloid progenitors seeding the thymus. Progression along the T cell lineage further requires cooperative signaling provided by the interleukin 7 receptor (IL-7R), but the molecular mechanisms responsible for the dynamic and lineage-specific regulation of IL-7R during thymopoiesis are unknown. We show that active Notch1 binds to a conserved CSL-binding site in the human IL7R gene promoter and critically regulates IL7R transcription and IL-7R alpha chain (IL-7Ralpha) expression via the CSL-MAML complex. Defective Notch1 signaling selectively impaired IL-7Ralpha expression in T-lineage cells, but not B-lineage cells, and resulted in a compromised expansion of early human developing thymocytes, which was rescued upon ectopic IL-7Ralpha expression. The pathological implications of these findings are demonstrated by the regulation of IL-7Ralpha expression downstream of Notch1 in T cell leukemias. Thus, Notch1 controls early T cell development, in part by regulating the stage- and lineage-specific expression of IL-7Ralpha.


Assuntos
Regulação da Expressão Gênica , Leucemia/imunologia , Receptores de Interleucina-7/genética , Linfócitos T/imunologia , Timo/imunologia , Animais , Antígenos CD/imunologia , Sangue Fetal/imunologia , Feto/imunologia , Citometria de Fluxo , Regulação Neoplásica da Expressão Gênica , Humanos , Recém-Nascido , Leucemia/genética , Camundongos , Técnicas de Cultura de Órgãos , Receptor Notch1/imunologia , Timo/crescimento & desenvolvimento
16.
Blood ; 110(13): 4331-40, 2007 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-17823309

RESUMO

The T-cell receptor beta (TCRbeta)/pre-TCRalpha (pTalpha) pre-TCR complex (pre-TCR) signals the expansion and differentiation of de-veloping thymocytes. Functional pro-perties of the pre-TCR rely on its unique pTalpha chain, which suggests the participation of specific intracellular adaptors. However, pTalpha-interacting molecules remain unknown. Here, we identified a polyproline-arginine sequence in the human pTalpha cytoplasmic tail that interacted in vitro with SH3 domains of the CIN85/CMS family of adaptors, and mediated the recruitment of multiprotein complexes involving all (CMS, CIN85, and CD2BP3) members. Supporting the physiologic relevance of this interaction, we found that 1 such adaptor, CMS, interacted in vivo with human pTalpha, and its expression was selectively up-regulated during human thymopoiesis in pre-TCR-activated thymocytes. Upon activation, pre-TCR clustering was induced, and CMS and polymerized actin were simultaneously recruited to the pre-TCR activation site. CMS also associated via its C-terminal region to the actin cytoskeleton in the endocytic compartment, where it colocalized with internalized pTalpha in traffic to lysosomal degradation. Notably, deletion of the pTalpha CIN85/CMS-binding motif impaired pre-TCR-mediated Ca(2+) mobilization and NFAT transcriptional activity, and precluded activation induced by overexpression of a CMS-SH3 N-terminal mutant. These results provide the first molecular evidence for a pTalpha intracellular adaptor involved in pre-TCR function.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas do Citoesqueleto/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Sequência de Aminoácidos , Sítios de Ligação , Sinalização do Cálcio , Linhagem Celular , Proteínas do Citoesqueleto/genética , Citosol , Humanos , Complexos Multiproteicos , Fatores de Transcrição NFATC/metabolismo , Timo/citologia , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA