Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 264(Pt 1): 130458, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38423421

RESUMO

The PD-1/PD-L1 protein-protein interaction (PPI) controls an adaptive immune resistance mechanism exerted by tumor cells to evade immune responses. The large-molecule nature of current commercial monoclonal antibodies against this PPI hampers their effectiveness by limiting tumor penetration and inducing severe immune-related side effects. Synthetic small-molecule inhibitors may overcome such limitations and have demonstrated promising clinical translation, but their design is challenging. Microbial natural products (NPs) are a source of small molecules with vast chemical diversity that have proved anti-tumoral activities, but which immunotherapeutic properties as PD-1/PD-L1 inhibitors had remained uncharacterized so far. Here, we have developed the first cell-based PD-1/PD-L1 blockade reporter assay to screen NPs libraries. In this study, 6000 microbial extracts of maximum biosynthetic diversity were screened. A secondary metabolite called alpha-cyclopiazonic acid (α-CPA) of a bioactive fungal extract was confirmed as a new PD-1/PD-L1 inhibitor with low micromolar range in the cellular assay and in an additional cell-free competitive assay. Thermal denaturation experiments with PD-1 confirmed that the mechanism of inhibition is based on its stabilization upon binding to α-CPA. The identification of α-CPA as a novel PD-1 stabilizer proves the unprecedented resolution of this methodology at capturing specific PD-1/PD-L1 PPI inhibitors from chemically diverse NP libraries.


Assuntos
Antígeno B7-H1 , Neoplasias , Humanos , Antígeno B7-H1/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Anticorpos Monoclonais
2.
Molecules ; 29(2)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38257340

RESUMO

Cancer is one of the leading causes of death worldwide, with breast cancer being the second cause of cancer-related mortality among women. Natural Products (NPs) are one of the main sources for drug discovery. During a screening campaign focused on the identification of extracts from Fundación MEDINA's library inhibiting the proliferation of cancer cell lines, a significant bioactivity was observed in extracts from cultures of the fungus Angustimassarina populi CF-097565. Bioassay-guided fractionation of this extract led to the identification and isolation of herbarin (1), 1-hydroxydehydroherbarin (4) plus other three naphthoquinone derivatives of which 3 and 5 are new natural products and 2 is herein described from a natural source for the first time. Four of these compounds (1, 3, 4 and 5) confirmed a specific cytotoxic effect against the human breast cancer cell line MCF-7. To evaluate the therapeutic potential of the compounds isolated, their efficacy was validated in 3D cultures, a cancer model of higher functionality. Additionally, an in-depth study was carried out to test the effect of the compounds in terms of cell mortality, sphere disaggregation, shrinkage, and morphology. The cell profile of the compounds was also compared to that of known cytotoxic compounds with the aim to distinguish the drug mode of action (MoA). The profiles of 1, 3 and 4 showed more biosimilarity between them, different to 5, and even more different to other known cytotoxic agents, suggesting an alternative MoA responsible for their cytotoxicity in 3D cultures.


Assuntos
Ascomicetos , Medicamentos Biossimilares , Neoplasias da Mama , Feminino , Humanos , Neoplasias da Mama/tratamento farmacológico , Bioensaio
3.
Pharmaceutics ; 15(2)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36839814

RESUMO

Memnoniella is a fungal genus from which a wide range of diverse biologically active compounds have been isolated. A Memnoniella dichroa CF-080171 extract was identified to exhibit potent activity against Plasmodium falciparum 3D7 and Trypanosoma cruzi Tulahuen whole parasites in a high-throughput screening (HTS) campaign of microbial extracts from the Fundación MEDINA's collection. Bioassay-guided isolation of the active metabolites from this extract afforded eight new meroterpenoids of varying potencies, namely, memnobotrins C-E (1-3), a glycosylated isobenzofuranone (4), a tricyclic isobenzofuranone (5), a tetracyclic benzopyrane (6), a tetracyclic isobenzofuranone (7), and a pentacyclic isobenzofuranone (8). The structures of the isolated compounds were established by (+)-ESI-TOF high-resolution mass spectrometry and nuclear magnetic resonance spectroscopy. Compounds 1, 2, and 4 exhibited potent antiparasitic activity against P. falciparum 3D7 (EC50 0.04-0.243 µM) and T. cruzi Tulahuen (EC50 0.266-1.37 µM) parasites, as well as cytotoxic activity against HepG2 tumoral liver cells (EC50 1.20-4.84 µM). The remaining compounds (3, 5-8) showed moderate or no activity against the above-mentioned parasites and cells.

4.
Sci Rep ; 12(1): 1649, 2022 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-35102193

RESUMO

As part of our screening program for the discovery of molecules of microbial origin with skin-whitening activity, 142 diverse fungal endophytes from a wide variety of Andalusia arid plants were screened, applying the OSMAC approach. The fungal strains CF-090361 and CF-090766, isolated from xerophytic plants, were selected as the most promising, while phylogenetic analysis revealed that both strains could represent a new species within the genus Comoclathris. The effect of different fermentation conditions on the production of tyrosinase inhibitory activity was examined, in order to identify the optimum cultivation conditions. LCMS based metabolomics was applied to determine significant differences between the strains and fermentation conditions, and to identify potential bioactive secondary metabolites. Bioassay-guided purification of the main active components led to the isolation of three new compounds (1-3), along with the known compounds graphostrin B (4) and brevianamide M (5). Compound 1 (Comoclathrin) demonstrated the strongest anti-tyrosinase activity (IC50 0.16 µΜ), which was 90-times higher than kojic acid (IC50 14.07 µΜ) used as positive control. Additionally, comoclathrin showed no significant cytotoxicity against a panel of cancer cell lines (HepG2, A2058, A549, MCF-7 and MIA PaCa-2) and normal BJ fibroblasts. These properties render comoclathrin an excellent development candidate as whitening agent.


Assuntos
Ascomicetos/metabolismo , Endófitos/metabolismo , Inibidores Enzimáticos/farmacologia , Monofenol Mono-Oxigenase/antagonistas & inibidores , Plantas/microbiologia , Preparações Clareadoras de Pele/farmacologia , Células A549 , Ascomicetos/genética , Sobrevivência Celular/efeitos dos fármacos , Clima Desértico , Endófitos/genética , Inibidores Enzimáticos/isolamento & purificação , Inibidores Enzimáticos/toxicidade , Células Hep G2 , Humanos , Células MCF-7 , Metaboloma , Metabolômica , Monofenol Mono-Oxigenase/metabolismo , Filogenia , Preparações Clareadoras de Pele/isolamento & purificação , Preparações Clareadoras de Pele/toxicidade
5.
Pharmaceuticals (Basel) ; 14(3)2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33809512

RESUMO

A novel cyclic antimalarial and antitrypanosome hexapeptide, pipecolisporin (1), was isolated from cultures of Nigrospora oryzae CF-298113, a fungal endophyte isolated from roots of Triticum sp. collected in a traditional agricultural land of Montefrío, Granada, Spain. The structure of this compound, including its absolute configuration, was elucidated by HRMS, 1-D and 2-D NMR spectroscopy, and Marfey's analysis. This metabolite displayed interesting activity against Plasmodium falciparum and Trypanosoma cruzi, with IC50 values in the micromolar range, and no significant cytotoxicity against the human cancer cell lines A549, A2058, MCF7, MIA PaCa-2, and HepG2.

6.
Sci Rep ; 8(1): 9729, 2018 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-29950656

RESUMO

Native plant communities from arid areas present distinctive characteristics to survive in extreme conditions. The large number of poorly studied endemic plants represents a unique potential source for the discovery of novel fungal symbionts as well as host-specific endophytes not yet described. The addition of adsorptive polymeric resins in fungal fermentations has been seen to promote the production of new secondary metabolites and is a tool used consistently to generate new compounds with potential biological activities. A total of 349 fungal strains isolated from 63 selected plant species from arid ecosystems located in the southeast of the Iberian Peninsula, were characterized morphologically as well as based on their ITS/28S ribosomal gene sequences. The fungal community isolated was distributed among 19 orders including Basidiomycetes and Ascomycetes, being Pleosporales the most abundant order. In total, 107 different genera were identified being Neocamarosporium the genus most frequently isolated from these plants, followed by Preussia and Alternaria. Strains were grown in four different media in presence and absence of selected resins to promote chemical diversity generation of new secondary metabolites. Fermentation extracts were evaluated, looking for new antifungal activities against plant and human fungal pathogens, as well as, cytotoxic activities against the human liver cancer cell line HepG2. From the 349 isolates tested, 126 (36%) exhibited significant bioactivities including 58 strains with exclusive antifungal properties and 33 strains with exclusive activity against the HepG2 hepatocellular carcinoma cell line. After LCMS analysis, 68 known bioactive secondary metabolites could be identified as produced by 96 strains, and 12 likely unknown compounds were found in a subset of 14 fungal endophytes. The chemical profiles of the differential expression of induced activities were compared. As proof of concept, ten active secondary metabolites only produced in the presence of resins were purified and identified. The structures of three of these compounds were new and herein are elucidated.


Assuntos
Antifúngicos/metabolismo , Antineoplásicos/metabolismo , Plantas/microbiologia , Alternaria/metabolismo , Antifúngicos/farmacologia , Antineoplásicos/farmacologia , Ascomicetos/metabolismo , Ascomicetos/fisiologia , Basidiomycota/metabolismo , Basidiomycota/fisiologia , Ecossistema , Células Hep G2 , Humanos , Testes de Sensibilidade Microbiana , Filogenia
7.
Front Microbiol ; 8: 649, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28469610

RESUMO

New fungal SMs (SMs) have been successfully described to be produced by means of in vitro-simulated microbial community interactions. Co-culturing of fungi has proved to be an efficient way to induce cell-cell interactions that can promote the activation of cryptic pathways, frequently silent when the strains are grown in laboratory conditions. Filamentous fungi represent one of the most diverse microbial groups known to produce bioactive natural products. Triggering the production of novel antifungal compounds in fungi could respond to the current needs to fight health compromising pathogens and provide new therapeutic solutions. In this study, we have selected the fungus Botrytis cinerea as a model to establish microbial interactions with a large set of fungal strains related to ecosystems where they can coexist with this phytopathogen, and to generate a collection of extracts, obtained from their antagonic microbial interactions and potentially containing new bioactive compounds. The antifungal specificity of the extracts containing compounds induced after B. cinerea interaction was determined against two human fungal pathogens (Candida albicans and Aspergillus fumigatus) and three phytopathogens (Colletotrichum acutatum, Fusarium proliferatum, and Magnaporthe grisea). In addition, their cytotoxicity was also evaluated against the human hepatocellular carcinoma cell line (HepG2). We have identified by LC-MS the production of a wide variety of known compounds induced from these fungal interactions, as well as novel molecules that support the potential of this approach to generate new chemical diversity and possible new therapeutic agents.

8.
J Nat Prod ; 80(4): 845-853, 2017 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-28277681

RESUMO

A search for cytotoxic agents from cultures of the endophytic fungus Dothiora sp., isolated from the endemic plant Launaea arborescens, led to the isolation of six new compounds structurally related to hormonemate, with moderate cytotoxic activity against different cancer cell lines. By using a bioassay-guided fractionation approach, hormonemates A-D (1-4), hormonemate (5), and hormonemates E (6) and F (7) were obtained from the acetone extract of this fungus. Their structures were determined using a combination of HRMS, ESI-qTOF-MS/MS, 1D and 2D NMR experiments, and chemical degradation. The cytotoxic activities of these compounds were evaluated by microdilution colorimetric assays against human breast adenocarcinoma (MCF-7), human liver cancer cells (HepG2), and pancreatic cancer cells (MiaPaca_2). Most of the compounds displayed cytotoxic activity against this panel.


Assuntos
Antineoplásicos/isolamento & purificação , Antineoplásicos/farmacologia , Ascomicetos/química , Asteraceae/química , Antineoplásicos/química , Ensaios de Seleção de Medicamentos Antitumorais , Ésteres/farmacologia , Células Hep G2 , Humanos , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular
9.
J Biomol Screen ; 21(6): 567-78, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26962874

RESUMO

It is widely accepted that central nervous system inflammation and systemic inflammation play a significant role in the progression of chronic neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease, neurotropic viral infections, stroke, paraneoplastic disorders, traumatic brain injury, and multiple sclerosis. Therefore, it seems reasonable to propose that the use of anti-inflammatory drugs might diminish the cumulative effects of inflammation. Indeed, some epidemiological studies suggest that sustained use of anti-inflammatory drugs may prevent or slow down the progression of neurodegenerative diseases. However, the anti-inflammatory drugs and biologics used clinically have the disadvantage of causing side effects and a high cost of treatment. Alternatively, natural products offer great potential for the identification and development of bioactive lead compounds into drugs for treating inflammatory diseases with an improved safety profile. In this work, we present a validated high-throughput screening approach in 96-well plate format for the discovery of new molecules with anti-inflammatory/immunomodulatory activity. The in vitro models are based on the quantitation of nitrite levels in RAW264.7 murine macrophages and interleukin-8 in Caco-2 cells. We have used this platform in a pilot project to screen a subset of 5976 noncytotoxic crude microbial extracts from the MEDINA microbial natural product collection. To our knowledge, this is the first report on an high-throughput screening of microbial natural product extracts for the discovery of immunomodulators.


Assuntos
Anti-Inflamatórios/farmacologia , Produtos Biológicos/farmacologia , Ensaios de Triagem em Larga Escala/métodos , Inflamação/tratamento farmacológico , Animais , Anti-Inflamatórios/química , Células CACO-2 , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/patologia , Misturas Complexas/farmacologia , Humanos , Fatores Imunológicos/farmacologia , Inflamação/patologia , Interleucina-8/metabolismo , Camundongos , Degeneração Neural/tratamento farmacológico , Doenças Neurodegenerativas , Nitritos/metabolismo , Células RAW 264.7
10.
Neuropharmacology ; 101: 538-48, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26455662

RESUMO

Parkinson's disease (PD) and Amyotrophic lateral sclerosis (ALS), are neurodegenerative disorders characterized by loss of dopaminergic or motor neurons, respectively. Although understanding of the PD and ALS pathogenesis remains incomplete, increasing evidence from human and animal studies has suggested that aberrant GSK3ß, oxidative stress and mitochondrial damage are involved in their pathogenesis. Using two different molecular models, treatment with L-BMAA for ALS and rotenone for PD the effect of isolecanoric acid, a natural product isolated from a fungal culture, was evaluated. Pre-treatment with this molecule caused inhibition of GSK3ß and CK1, and a decrease in oxidative stress, mitochondrial damage, apoptosis and cell death. Taken together, these results indicated that isolecanoric acid might have a protective effect against the development of these neurodegenerative disorders.


Assuntos
Fármacos Neuroprotetores/farmacologia , Salicilatos/farmacologia , Diamino Aminoácidos/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Linhagem Celular Transformada , Sobrevivência Celular , Toxinas de Cianobactérias , Relação Dose-Resposta a Droga , Agonistas de Aminoácidos Excitatórios/farmacologia , Citometria de Fluxo , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Neuroblastoma/patologia , Espécies Reativas de Oxigênio/metabolismo
11.
J Nat Prod ; 77(9): 2118-23, 2014 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-25215605

RESUMO

Bioassay-guided fractionation of the crude fermentation extract of Heterospora chenopodii led to the isolation of a novel monoacylglyceryltrimethylhomoserine (1). The structure of this new betaine lipid was elucidated by detailed spectroscopic analysis using one- and two-dimensional NMR experiments and high-resolution mass spectrometry. Compound 1 displayed moderate in vitro antimalarial activity against Plasmodium falciparum, with an IC50 value of 7 µM. This betaine lipid is the first monoacylglyceryltrimethylhomoserine ever reported in the Fungi, and its acyl moiety also represents a novel natural 3-keto fatty acid. The new compound was isolated during a drug discovery program aimed at the identification of new antimalarial leads from a natural product library of microbial extracts. Interestingly, the related fungus Heterospora dimorphospora was also found to produce compound 1, suggesting that species of this genus may be a promising source of monoacylglyceryltrimethylhomoserines.


Assuntos
Antimaláricos , Betaína , Plasmodium falciparum/efeitos dos fármacos , Triglicerídeos , Antimaláricos/química , Antimaláricos/isolamento & purificação , Antimaláricos/farmacologia , Betaína/análogos & derivados , Betaína/química , Betaína/isolamento & purificação , Betaína/farmacologia , Humanos , Malária/tratamento farmacológico , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Extratos Vegetais/química , Triglicerídeos/química , Triglicerídeos/isolamento & purificação , Triglicerídeos/farmacologia
12.
Microb Ecol ; 67(3): 648-58, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24419542

RESUMO

Dry olive residue (DOR) is an abundant waste product resulting from a two-phase olive oil extraction system. Due to its high organic and mineral content, this material has been proposed as an organic soil amendment; however, it presents phytotoxic and microtoxic properties. Thus, a pretreatment is necessary before its application to soil. Among the strategies for the bioremediation of DOR is treatment with ligninolytic fungi, e.g. Coriolopsis floccosa. This work aimed to assess the diversity of culturable fungi in a soil of the southeast Iberian Peninsula and to evaluate the short-term impact of untransformed and C. floccosa-transformed DOR on soil mycobiota. A total of 1,733 strains were isolated by the particle filtration method and were grouped among 109 different species using morphological and molecular methods. The majority of isolates were ascomycetes and were concentrated among three orders: Hypocreales, Eurotiales and Capnodiales. The soil amendment with untransformed DOR was associated with a depression in fungal diversity at 30 days and changes in the proportions of the major species. However, when C. floccosa-transformed DOR was applied to the soil, changes in fungal diversity were less evident, and species composition was similar to unamended soil.


Assuntos
Fungos/patogenicidade , Olea/metabolismo , Microbiologia do Solo , Análise por Conglomerados , Contagem de Colônia Microbiana , DNA Fúngico/química , DNA Fúngico/genética , Filtração , Fungos/classificação , Fungos/genética , Fungos/crescimento & desenvolvimento , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA , Espanha
13.
J Biomol Screen ; 19(1): 57-65, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24045581

RESUMO

Natural products are considered an extremely valuable source for the discovery of new drugs against diverse pathologies. As yet, we have only explored a fraction of the diversity of bioactive compounds, and opportunities for discovering new natural products leading to new drugs are huge. In the present study, U2nesRELOC, a previously established cell-based imaging assay, was employed to screen a collection of extracts of microbial origin for nuclear export inhibition activity. The fluorescent signal of untreated U2nesRELOC cells localizes predominantly to the cytoplasm. Upon treatment with the nuclear export inhibitor leptomycin B, the fluorescent-tagged reporter proteins appear as speckles in the nucleus. A proprietary collection of extracts from fungi, actinomycetes, and unicellular bacteria that covers an uncommonly broad chemical space was used to interrogate this nuclear export assay system. A two-step image-based analysis allowed us to identify 12 extracts with biological activities that are not associated with previously known active metabolites. The fractionation and structural elucidation of active compounds revealed several chemical structures with nuclear export inhibition activity. Here we show that substrates of the nuclear export receptor CRM1, such as Rev, FOXO3a and NF-κB, accumulate in the nucleus in the presence of the fungal metabolite MDN-0105 with an IC50 value of 3.4 µM. Many important processes in tumor formation and progression, as well as in many viral infections, critically depend on the nucleocytoplasmic trafficking of proteins and RNA molecules. Therefore, the disruption of nuclear export is emerging as a novel therapeutic approach with enormous clinical potential. Our work highlights the potential of applying high-throughput phenotypic imaging on natural product extracts to identify novel nuclear export inhibitors.


Assuntos
Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Produtos Biológicos/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Ensaios de Triagem em Larga Escala , Animais , Produtos Biológicos/isolamento & purificação , Linhagem Celular , Núcleo Celular/metabolismo , Fracionamento Químico/métodos , Relação Dose-Resposta a Droga , Descoberta de Drogas/métodos , Fatores de Transcrição Forkhead/metabolismo , Expressão Gênica/efeitos dos fármacos , Genes Reporter , Humanos , Concentração Inibidora 50 , NF-kappa B/metabolismo
14.
J Nat Prod ; 75(6): 1210-4, 2012 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-22694270

RESUMO

Three new cyclic tetrapeptides (1-3) have been isolated from the crude fermentation extract of Onychocola sclerotica. The planar structures of 1-3 were elucidated by detailed spectroscopic analyses using one- and two-dimensional NMR experiments and high-resolution mass spectrometry. The absolute configuration of the amino acid residues in each cyclotetrapeptide was established by Marfey's method. Compounds 1-3 displayed activity as cardiac calcium channel blockers (Cav1.2) but did not inhibit the hERG potassium channel and were not cytotoxic. These peptides are the first secondary metabolites ever reported from fungi of the order Arachnomycetales.


Assuntos
Ascomicetos/química , Peptídeos Cíclicos/isolamento & purificação , Vasodilatadores/isolamento & purificação , Aminoácidos , Canais de Cálcio Tipo L/efeitos dos fármacos , Canal de Potássio ERG1 , Canais de Potássio Éter-A-Go-Go/efeitos dos fármacos , Fermentação , Humanos , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia , Vasodilatadores/química , Vasodilatadores/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA