Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38771074

RESUMO

Imetelstat is a novel, first-in-class, oligonucleotide telomerase inhibitor in development for the treatment of hematologic malignancies including lower-risk myelodysplastic syndromes and myelofibrosis. A nonlinear mixed-effects model was developed to characterize the population pharmacokinetics of imetelstat and identify and quantify covariates that contribute to its pharmacokinetic variability. The model was developed using plasma concentrations from 7 clinical studies including 424 patients with solid tumors or hematologic malignancies who received single-agent imetelstat via intravenous infusion at various dose levels (0.4-11.7 mg/kg) and schedules (every week to every 4 weeks). Covariate analysis included factors related to demographics, disease, laboratory results, renal and hepatic function, and antidrug antibodies. Imetelstat was described by a two-compartment, nonlinear disposition model with saturable binding/distribution and dose- and time-dependent elimination from the central compartment. Theory-based allometric scaling for body weight was included in disposition parameters. The final covariates included sex, time, malignancy, and dose on clearance; malignancy and sex on volume of the central compartment; and malignancy and spleen volume on concentration of target. Clearance in females was modestly lower, resulting in nonclinically relevant increases in predicted exposure relative to males. No effects on imetelstat pharmacokinetics were identified for mild-to-moderate hepatic or renal impairment, age, race, and antidrug antibody status. All model parameters were estimated with adequate precision (relative standard error < 29%). Visual predictive checks confirmed the capacity of the model to describe the data. The analysis supports the imetelstat body-weight-based dosing approach and lack of need for dose individualizations for imetelstat-treated patients.

2.
Cancer Chemother Pharmacol ; 89(3): 363-372, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35118559

RESUMO

PURPOSE: Entrectinib is an anti-cancer agent that inhibits TRKA/B/C, ROS1, and ALK. Secondary pharmacokinetic (PK) exposure parameters for entrectinib derived from a previously described population PK model were used to characterize exposure-response relationships in patients treated with entrectinib. METHODS: Data were pooled from Phase 1 and 2 studies of entrectinib (600-800 mg/day in adults, 250-750 mg/m2/day in children) in 293 patients with NTRK-, ROS1-, or ALK-positive, locally advanced or metastatic tumors. Efficacy was evaluated by the changes in sum of target lesion diameters and best overall response defined by RECIST1.1. A longitudinal nonlinear mixed-effect model described the relationship between entrectinib exposure and tumor size data in patients with ROS1-positive non-small-cell lung cancer (NSCLC) or NTRK fusion-positive solid tumors. The relationship between exposure and treatment-emergent (TEAEs) or serious (SAEs) adverse events was assessed by logistic regression in all patients for whom secondary PK parameter estimates were derived. RESULTS: Among the 89 patients with evaluable efficacy data included in the exposure-efficacy analysis, 73% (65/89) achieved a complete or partial response. Entrectinib exposure distribution was similar in responders and non-responders. Model-described tumor shrinkage rates were 8-12 times greater than growth rates in both ROS-1-positive NSCLC patients and NTRK fusion-positive solid tumor patients, with no relationship between exposure and these rates. The probability of experiencing a Grade ≥ 3 TEAE or SAE increased with exposure, primarily at doses > 600 mg/day. CONCLUSION: These analyses supported that entrectinib at 600 mg/day provides an acceptable benefit-risk ratio in adults with NTRK-, ROS1-, or ALK-positive tumors, considered as rare disease.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Segunda Neoplasia Primária , Adulto , Benzamidas , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Criança , Humanos , Indazóis , Neoplasias Pulmonares/tratamento farmacológico , Inibidores de Proteínas Quinases/efeitos adversos , Proteínas Tirosina Quinases , Proteínas Proto-Oncogênicas , Receptores Proteína Tirosina Quinases
3.
Cancer Chemother Pharmacol ; 88(6): 997-1007, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34536094

RESUMO

PURPOSE: Entrectinib (ROZLYTREK®) is a CNS-active, potent, and selective inhibitor of ROS1, TRK A/B/C, and ALK kinase activity. It was recently approved for the treatment of ROS1-positive non-small cell lung cancer and NTRK gene fusion-positive solid tumors. The main objective of this analysis was to characterize the pharmacokinetics (PK) of entrectinib and its main active metabolite, M5. METHODS: A total of 276 cancer patients receiving oral entrectinib were included in the analysis. A model-based population approach was used to characterize the PK profiles of both entities using NONMEM® 7.4. A joint model captures the PK of both entrectinib and M5. The effects of pH modifiers, formulation, weight, age, and sex on model parameters were assessed. Model performance was evaluated using visual predictive checks (VPCs). RESULTS: The absorption of entrectinib was best described using a sequential zero- and first-order absorption model and the disposition with one-compartment model for each entity with linear elimination. Moderate-to-high between-patient variability was estimated in model parameters (from 30.8% for the apparent clearance of entrectinib to 122% for the first-order absorption rate constant). Theory-based allometric scaling using body weight on clearances and volumes and a 28% lower relative bioavailability of the F1 formulation in pediatric patients were retained in the model. The VPC confirmed the good predictive performance of the PopPK model. CONCLUSIONS: A robust population PK model was built and qualified for entrectinib and M5, describing linear PK for both entities. This model was used to support the ROZLYTREK® new drug application.


Assuntos
Benzamidas/administração & dosagem , Benzamidas/farmacocinética , Indazóis/administração & dosagem , Indazóis/farmacocinética , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/farmacocinética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Seguimentos , Humanos , Masculino , Dose Máxima Tolerável , Pessoa de Meia-Idade , Neoplasias/patologia , Prognóstico , Distribuição Tecidual , Adulto Jovem
4.
Clin Pharmacokinet ; 51(11): 751-64, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23055348

RESUMO

BACKGROUND AND OBJECTIVE: PM00104 (Zalypsis(®)) is a novel marine-derived compound that has shown antineoplastic activity against a number of human tumour cell lines. Myelosuppression was found to be a PM00104 dose-limiting toxicity during phase I studies. The objective of this study was to characterize the time course of neutropenia after intravenous PM00104 administration in cancer patients. METHODS: Absolute neutrophil counts (ANCs) and pharmacokinetic data from 144 patients receiving PM00104 doses ranging from 0.053 to 5 mg/m(2) were used to estimate the system-related (baseline ANC [Circ(0)], mean transit time [MTT], feedback on proliferation [γ] and maturation [δ]) and drug-specific (first-order elimination rate constant from effect compartment [k(e0)] [α and ß]) parameters of a modified Friberg's model. The concentrations in the effect compartment (C(e)) were assumed to reduce the proliferation rate of the progenitor cells according to the function [Formula: see text] Model evaluation and simulations were undertaken to evaluate the effect of dose intensity, dose density and the intravenous infusion duration on severe neutropenia incidence. RESULTS: The typical values (between-subject variability [%]) of the Circ(0), MTT, γ, δ, k(e0), α and ß were estimated to be 5.66 × 10(9) cells/L (13 %), 149 h (29 %), 0.136, 0.191, 0.00639 h(-1) (32 %), 0.332 L/µg (24 %) and 1.47, respectively. Age, bodyweight, sex, serum albumin, total protein, liver metastases, number of previous chemotherapy lines and performance status were not associated with model parameters. The model evaluation evidenced an accurate prediction of the neutropenia grade 3 and/or 4 incidence. Simulations indicated that PM00104 dose and dosing interval, but not infusion duration, were the main determinants of the neutropenia severity and duration. CONCLUSIONS: The time course of neutropenia following PM00104 was well characterized by the model developed. The model-predicted time course of the ANCs and its variability confirmed that neutropenia is reversible, of short duration and non-cumulative.


Assuntos
Antineoplásicos/administração & dosagem , Modelos Biológicos , Neutropenia/induzido quimicamente , Tetra-Hidroisoquinolinas/administração & dosagem , Antineoplásicos/farmacocinética , Relação Dose-Resposta Imunológica , Humanos , Contagem de Leucócitos , Neoplasias/sangue , Neoplasias/tratamento farmacológico , Neutropenia/sangue , Tetra-Hidroisoquinolinas/farmacocinética
5.
Cancer Chemother Pharmacol ; 69(1): 15-24, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21590449

RESUMO

OBJECTIVE: The aim of this study was to characterize the population pharmacokinetics of PM00104 (Zalypsis(®)) in cancer patients. METHODS: A total of 135 patients included in four phase I clinical trials who receive intravenous PM00104 at doses ranging from 53 to 5,000 µg/m(2) and administered as 1-, 3-, or 24-h infusion every 3 weeks or as 1-h infusion on days 1, 8, and 15 of a 28-day cycle, or 1-h infusion daily during 5 consecutive days every 3 weeks were included in the analysis. Pharmacokinetic data were analyzed with non-linear mixed effect model using NONMEM VI software. The effect of selected patient covariates on PM00104 pharmacokinetics was investigated. Model evaluation was performed using predictive checks and non-parametric bootstrap. RESULTS: An open four-compartment catenary linear model with first-order elimination was developed to best describe the data. Plasma clearance and its between-subject variability was 43.7 L/h (34%). Volume of distribution at steady state was 822 L (117%). Within the range of covariates studied, age, sex, body size variables, aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, total bilirubin, lactate dehydrogenase, creatinine clearance, albumin, total protein, hemoglobin, performance status, liver metastases, dose-limiting toxicity, and stable disease for 3 months were not statistically related to PM00104 pharmacokinetic parameters. Bootstrap and posterior predictive check evidenced the model was deemed appropriate to describe the time course of PM00104 plasma concentrations in cancer patients. CONCLUSIONS: The integration of phase I pharmacokinetic data demonstrated PM00104 linear elimination from plasma, dose proportionality up to 5,000 µg/m(2), and time-independent pharmacokinetics. No clinically relevant covariates were identified as predictors of PM00104 pharmacokinetics.


Assuntos
Antineoplásicos/farmacocinética , Neoplasias/tratamento farmacológico , Tetra-Hidroisoquinolinas/farmacocinética , Adulto , Idoso , Antineoplásicos/administração & dosagem , Antineoplásicos/uso terapêutico , Relação Dose-Resposta a Droga , Esquema de Medicação , Feminino , Humanos , Infusões Intravenosas , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Dinâmica não Linear , Tetra-Hidroisoquinolinas/administração & dosagem , Tetra-Hidroisoquinolinas/uso terapêutico , Distribuição Tecidual , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA