Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Front Oncol ; 13: 1276352, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38269022

RESUMO

Background: Advances in the understanding of the pathobiology of childhood B-cell acute lymphoblastic leukemia (B-ALL) have led towards risk-oriented treatment regimens and markedly improved survival rates. However, treatment-related toxicities remain a major cause of mortality in developing countries. One of the most common adverse effects of chemotherapy in B-ALL is the hematologic toxicity, which may be related to genetic variants in membrane transporters that are critical for drug absorption, distribution, and elimination. In this study we detected genetic variants present in a selected group genes of the ABC and SLC families that are associated with the risk of high-grade hematologic adverse events due to chemotherapy treatment in a group of Mexican children with B-ALL. Methods: Next generation sequencing (NGS) was used to screen six genes of the ABC and seven genes of the SLC transporter families, in a cohort of 96 children with B-ALL. The grade of hematologic toxicity was classified according to the National Cancer Institute's Common Terminology Criteria for Adverse Events (CTCAE) version 5.0, Subsequently, two groups of patients were formed: the null/low-grade (grades 1 and 2) and the high-grade (grades 3 to 5) adverse events groups. To determine whether there is an association between the genetic variants and high-grade hematologic adverse events, logistic regression analyses were performed using co-dominant, dominant, recessive, overdominant and log-additive inheritance models. Odds ratio (OR) and 95% confidence intervals (95% CI) were calculated. Results: We found two types of associations among the genetic variants identified as possible predictor factors of hematologic toxicity. One group of variants associated with high-grade toxicity risk: ABCC1 rs129081; ABCC4 rs227409; ABCC5 rs939338, rs1132776, rs3749442, rs4148575, rs4148579 and rs4148580; and another group of protective variants that includes ABCC1 rs212087 and rs212090; SLC22A6 rs4149170, rs4149171 and rs955434. Conclusion: There are genetic variants in the SLC and ABC transporter families present in Mexican children with B-ALL that can be considered as potential risk markers for hematologic toxicity secondary to chemotherapeutic treatment, as well as other protective variants that may be useful in addition to conventional risk stratification for therapeutic decision making in these highly vulnerable patients.

2.
BMC Infect Dis ; 22(1): 447, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35538426

RESUMO

INTRODUCTION: In Mexico, HIV genotyping is performed in people living with HIV (PLWH) failing their first-line antiretroviral (ARV) regimen; it is not routinely done for all treatment-naive PLWH before ARV initiation. The first nationally representative survey published in 2016 reported that the prevalence of pretreatment drug mutations in treatment-naive Mexican PLWH was 15.5% to any antiretroviral drug and 10.6% to non-nucleoside reverse transcriptase inhibitors (NNRTIs) using conventional Sanger sequencing. Most reports in Mexico focus on HIV pol gene and nucleoside and non-nucleoside reverse transcriptase inhibitor (NRTI and NNRTI) drug resistance mutations (DRMs) prevalence, using Sanger sequencing, next-generation sequencing (NGS) or both. To our knowledge, NGS has not be used to detect pretreatment drug resistance mutations (DRMs) in the HIV protease (PR) gene and its substrate the Gag polyprotein. METHODS: Treatment-naive adult Mexican PLWH were recruited between 2016 and 2019. HIV Gag and protease sequences were obtained by NGS and DRMs were identified using the WHO surveillance drug resistance mutation (SDRM) list. RESULTS: One hundred PLWH attending a public national reference hospital were included. The median age was 28 years-old, and most were male. The median HIV viral load was 4.99 [4.39-5.40] log copies/mL and median CD4 cell count was 150 [68.0-355.78] cells/mm3. As expected, most sequences clustered with HIV-1 subtype B (97.9%). Major PI resistance mutations were detected: 8 (8.3%) of 96 patients at a detection threshold of 1% and 3 (3.1%) at a detection threshold of 20%. A total of 1184 mutations in Gag were detected, of which 51 have been associated with resistance to PI, most of them were detected at a threshold of 20%. Follow-up clinical data was available for 79 PLWH at 6 months post-ART initiation, seven PLWH failed their first ART regimen; however no major PI mutations were identified in these individuals at baseline. CONCLUSIONS: The frequency of DRM in the HIV protease was 7.3% at a detection threshold of 1% and 3.1% at a detection threshold of 20%. NGS-based HIV drug resistance genotyping provide improved detection of DRMs. Viral load was used to monitor ARV response and treatment failure was 8.9%.


Assuntos
Fármacos Anti-HIV , Infecções por HIV , HIV-1 , Adulto , Fármacos Anti-HIV/farmacologia , Fármacos Anti-HIV/uso terapêutico , Antirretrovirais/uso terapêutico , Farmacorresistência Viral/genética , Feminino , Genótipo , Infecções por HIV/tratamento farmacológico , Infecções por HIV/epidemiologia , Protease de HIV/genética , Protease de HIV/uso terapêutico , HIV-1/genética , Humanos , Masculino , México/epidemiologia , Mutação , Peptídeo Hidrolases/genética , Inibidores da Transcriptase Reversa/uso terapêutico
3.
Int J Mol Sci ; 23(9)2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35563252

RESUMO

Corticotroph cells give rise to aggressive and rare pituitary neoplasms comprising ACTH-producing adenomas resulting in Cushing disease (CD), clinically silent ACTH adenomas (SCA), Crooke cell adenomas (CCA) and ACTH-producing carcinomas (CA). The molecular pathogenesis of these tumors is still poorly understood. To better understand the genomic landscape of all the lesions of the corticotroph lineage, we sequenced the whole exome of three SCA, one CCA, four ACTH-secreting PA causing CD, one corticotrophinoma occurring in a CD patient who developed Nelson syndrome after adrenalectomy and one patient with an ACTH-producing CA. The ACTH-producing CA was the lesion with the highest number of single nucleotide variants (SNV) in genes such as USP8, TP53, AURKA, EGFR, HSD3B1 and CDKN1A. The USP8 variant was found only in the ACTH-CA and in the corticotrophinoma occurring in a patient with Nelson syndrome. In CCA, SNV in TP53, EGFR, HSD3B1 and CDKN1A SNV were present. HSD3B1 and CDKN1A SNVs were present in all three SCA, whereas in two of these tumors SNV in TP53, AURKA and EGFR were found. None of the analyzed tumors showed SNV in USP48, BRAF, BRG1 or CABLES1. The amplification of 17q12 was found in all tumors, except for the ACTH-producing carcinoma. The four clinically functioning ACTH adenomas and the ACTH-CA shared the amplification of 10q11.22 and showed more copy-number variation (CNV) gains and single-nucleotide variations than the nonfunctioning tumors.


Assuntos
Adenoma Hipofisário Secretor de ACT , Adenoma , Carcinoma , Genômica , Síndrome de Nelson , Neoplasias Hipofisárias , Adenoma Hipofisário Secretor de ACT/genética , Adenoma/genética , Adenoma/patologia , Hormônio Adrenocorticotrópico , Aurora Quinase A , Carcinoma/genética , Corticotrofos/patologia , Receptores ErbB , Humanos , Melanocortinas , Complexos Multienzimáticos , Nucleotídeos , Neoplasias Hipofisárias/genética
4.
Arch Med Res ; 52(4): 414-422, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33541741

RESUMO

BACKGROUND: Refining risk stratification to avoid very early relapses (VER) in Mexican patients with B-lineage acute lymphoblastic leukemia (B-ALL) could lead to better survival rates in our population. AIM OF THE STUDY: The purpose of this study was to investigate the association between the United Kingdom ALL (UKALL)-CNA classifier and VER risk in Mexican patients with childhood B-ALL. METHODS: A nested case-control study of 25 cases with VER and 38 frequency-matched controls without relapse was conducted within the MIGICCL study cohort. They were grouped into the categories of the UKALL-CNA risk classifier (good [reference], intermediate and poor), according to the results obtained by multiplex ligation dependent probe amplification. Overall and disease-free survival (DFS) were estimated using the Kaplan-Meier method. Univariate and multivariate Cox proportional hazards analyses were conducted. RESULTS: The CDKN2A/B genes were most frequently deleted in the group with relapse. According to UKALL-CNA classifier, 33 (52.4%) patients were classified as good, 21 (33.3%) intermediate and 9 (14.3%) poor-risk B-ALL. The intermediate and poor risk groups were associated with an increased risk of VER (HR = 4.94, 95% CI = 1.87-13.07 and HR = 7.42, 95% CI = 2.37-23.26, respectively) in comparison to the good-risk patients. After adjusting by NCI risk classification and chemotherapy scheme in a multivariate model, the risks remained significant. CONCLUSIONS: Our data support the clinical utility of profiling CNAs to potentially refine current risk stratification strategies of patients with B-ALL.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Estudos de Casos e Controles , Criança , Variações do Número de Cópias de DNA , Deleção de Genes , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Prognóstico , Recidiva
5.
Enferm Infecc Microbiol Clin (Engl Ed) ; 38(4): 159-165, 2020 Apr.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-31395428

RESUMO

INTRODUCTION: The main cause of cervical cancer is an infection of keratinocytes in the basal layer of the stratified epithelium of the cervix by human papillomavirus (HPV). Other than in cervical samples, HPV DNA has been found in serum and other fluids but its origin is unclear. Extracellular vesicles (EV) could be a conveyance of viral DNA given their emerging role in cellular communication. The content of EV derived from cervical cells has not been properly explored and it is not known whether or not they contain HPV DNA. METHODS: We evaluated the DNA content of exosomes purified from cultures of HeLa cells by Next Generation Sequencing (NGS) and confirmed its presence by PCR. The presence of HPV DNA was also evaluated by PCR and NGS in EV from HPV-positive cervical samples without apparent lesion or with LSIL. RESULTS: We detected the integrated form of viral-DNA in exosomes from HeLa cells by NGS and confirmed its presence by PCR. The search for HPV sequences in EV obtained from cervical exudate samples without apparent lesion or with LSIL, where we expected to find the viral genome as an episome, indicated that HPV DNA, including the E6 and E7 oncogenes, is present in these EV. CONCLUSION: HPV DNA, including the viral oncogenes E6/E7, is found in exosomes regardless of the integration status of the virus in the infected cell.


Assuntos
Colo do Útero/virologia , DNA Viral/isolamento & purificação , Vesículas Extracelulares , Infecções por Papillomavirus , Vesículas Extracelulares/virologia , Feminino , Células HeLa , Humanos , Proteínas Oncogênicas Virais/genética , Infecções por Papillomavirus/diagnóstico
6.
Int J Mol Sci ; 20(10)2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-31096545

RESUMO

Acute lymphoblastic leukemia is the most common type of childhood cancer worldwide. Mexico City has one of the highest incidences and mortality rates of this cancer. It has previously been recognized that chromosomal translocations are important in cancer etiology. Specific fusion genes have been considered as important treatment targets in childhood acute lymphoblastic leukemia (ALL). The present research aimed at the identification and characterization of novel fusion genes with potential clinical implications in Mexican children with acute lymphoblastic leukemia. The RNA-sequencing approach was used. Four fusion genes not previously reported were identified: CREBBP-SRGAP2B, DNAH14-IKZF1, ETV6-SNUPN, ETV6-NUFIP1. Although a fusion gene is not sufficient to cause leukemia, it could be involved in the pathogenesis of the disease. Notably, these new translocations were found in genes encoding for hematopoietic transcription factors which are known to play an important role in leukemogenesis and disease prognosis such as IKZF1, CREBBP, and ETV6. In addition, they may have an impact on the prognosis of Mexican pediatric patients with ALL, with the potential to be included in the current risk stratification schemes or used as therapeutic targets.


Assuntos
Proteínas de Fusão Oncogênica/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Translocação Genética/genética , Adolescente , Adulto , Proteína de Ligação a CREB/genética , Criança , Pré-Escolar , Dineínas/genética , Feminino , Proteínas Ativadoras de GTPase/genética , Regulação Neoplásica da Expressão Gênica , Rearranjo Gênico , Humanos , Fator de Transcrição Ikaros/genética , Lactente , Masculino , México , Proteínas Nucleares/genética , Prognóstico , Proteínas Proto-Oncogênicas c-ets/genética , Proteínas de Ligação ao Cap de RNA/genética , Proteínas de Ligação a RNA/genética , Receptores Citoplasmáticos e Nucleares/genética , Proteínas Repressoras/genética , Adulto Jovem , Variante 6 da Proteína do Fator de Translocação ETS
7.
Oncol Rep ; 39(1): 349-357, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29138851

RESUMO

Tumor-initiating cells possess the capacity for self-renewal and to create heterogeneous cell lineages within a tumor. Therefore, the identification and isolation of cancer stem cells is an essential step in the analysis of their biology. The aim of the present study was to determine whether the cell surface protein neuropilin 1 (NRP1) can be used as a biomarker of stem-like cells in lung cancer tumors. For this purpose, NRP1-negative (NRP1-) and NRP1-positive (NRP1+) cell subpopulations from two lung cancer cell lines were sorted by flow cytometry. The NRP1+ cell subpopulation showed an increased expression of pluripotency markers OCT-4, Bmi-1 and NANOG, as well as higher cell migration, clonogenic and self-renewal capacities. NRP1 gene knockdown resulted not only in a decreased expression of stemness markers but also in a decrease in the clonogenic, cell migration and self-renewal potential. In addition, the NRP1+ cell subpopulation exhibited dysregulated expression of epithelial-to-mesenchymal transition-associated genes, including the ΔNp63 isoform protein, a previously reported characteristic of cancer stem cells. Notably, a genome-wide expression analysis of NRP1-knockdown cells revealed a potential new NRP1 pathway involving OLFML3 and genes associated with mitochondrial function. In conclusion, we demonstrated that NRP1+ lung cancer cells have tumor-initiating properties. NRP1 could be a useful biomarker for tumor-initiating cells in lung cancer tumors.


Assuntos
Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Células-Tronco Neoplásicas/citologia , Neuropilina-1/genética , Neuropilina-1/metabolismo , Células A549 , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Neoplasias Pulmonares/genética , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Fenótipo , Células Tumorais Cultivadas
8.
Arch Med Res ; 48(4): 343-351, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28886875

RESUMO

BACKGROUND: NF-κB is a transcription factor involved in cancer stem cells maintenance of many tumors. Little is known about the specific stem-associated upstream regulators of this pathway in ovarian cancer. The Aim of the study was to analyze the role of the canonical and non-canonical NF-κB pathways in stem cells of ovarian cancer cell lines. METHODS: Stem cells were isolated using sorting cytometry. Western blot and RT-PCR were used to quantify protein and messenger RNA levels. Loss and gain of function assays were performed using siRNAs and dominant-negative proteins, respectively. NF-κB binding activity was measured with a reporter gene assay. The stem phenotype was estimated with clonogenic assays using soft agar, colony formation, ovospheres formation and in vivo tumorigenicity assays. RESULTS: The CD44+ subpopulation of SKOV3 ovarian cancer cell line presented higher mRNA levels of key stemness genes, an increased tumorigenic capacity and higher expression of the RelA, RelB and IKKα. When the canonical pathway was inhibited by means of a dominant-negative version of IkBα, the stem cell population was reduced, as shown by a reduced CD44+ subpopulation, a decrease in the expression of the stemness genes and a reduction of the stem phenotype. In addition, IKKα, the main upstream non-canonical kinase, was highly expressed in the CSC population. Accordingly, when IKKα was inhibited using shRNAs, the expression of the stemness genes was reduced. CONCLUSIONS: This report is the first to show the importance of several elements of both NF-κB pathway in maintaining the ovarian cancer stem cell population.


Assuntos
NF-kappa B/metabolismo , Neoplasias Ovarianas/patologia , Contagem de Células , Linhagem Celular Tumoral , Feminino , Humanos , Receptores de Hialuronatos/genética , Receptores de Hialuronatos/metabolismo , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , NF-kappa B/genética , Células-Tronco Neoplásicas/metabolismo , Fenótipo , RNA Interferente Pequeno/genética , Transdução de Sinais , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/metabolismo , Fator de Transcrição RelB/genética , Fator de Transcrição RelB/metabolismo
9.
J Biol Chem ; 292(33): 13745-13757, 2017 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-28655776

RESUMO

Messenger RNA alternative splicing (AS) regulates the expression of a variety of genes involved in both physiological and pathological processes. AS of the anti-apoptotic and proliferation-associated survivin (BIRC5) gene generates six isoforms, which regulate key aspects of cancer initiation and progression. One of the isoforms is survivin DEx3, in which the exclusion of exon 3 generates a unique carboxyl terminus with specific anti-apoptotic functions. This isoform is highly expressed in advanced stages of breast and cervical tumors. Therefore, understanding the mechanisms that regulate survivin DEx3 mRNA AS is clearly important. To this end, we designed a minigene (M), and in combination with a series of deletions and site-directed mutations, we determined that the first 22 bp of exon 3 contain cis-acting elements that enhance the exclusion of exon 3 to generate the survivin DEx3 mRNA isoform. Furthermore, using pulldown assays, we discovered that Sam68 is a possible trans-acting factor that binds to this region and regulates exon 3 splicing. This result was corroborated using a cell line in which the Sam68 binding site in the survivin gene was mutated with the CRISPR/Cas system. This work provides the first clues regarding the regulation of survivin DEx3 mRNA splicing.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Processamento Alternativo , Proteínas de Ligação a DNA/metabolismo , Proteínas Inibidoras de Apoptose/metabolismo , Proteínas de Neoplasias/metabolismo , RNA Mensageiro/metabolismo , RNA Neoplásico/metabolismo , Proteínas de Ligação a RNA/metabolismo , Elementos de Resposta , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Sistemas CRISPR-Cas , Células Clonais , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/genética , Embrião não Mamífero , Éxons , Deleção de Genes , Células HeLa , Humanos , Proteínas Inibidoras de Apoptose/genética , Mutagênese Sítio-Dirigida , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Transplante de Neoplasias/patologia , Mutação Puntual , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Interferência de RNA , RNA Mensageiro/química , RNA Neoplásico/química , Proteínas de Ligação a RNA/antagonistas & inibidores , Proteínas de Ligação a RNA/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Survivina , Transplante Heterólogo , Carga Tumoral , Peixe-Zebra
11.
Sci Rep ; 6: 37340, 2016 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-27876836

RESUMO

Breast cancer stem cells (BCSCs) overexpress components of the Nuclear factor-kappa B (NF-κB) signaling cascade and consequently display high NF-κB activity levels. Breast cancer cell lines with high proportion of CSCs exhibit high NF-κB-inducing kinase (NIK) expression. The role of NIK in the phenotype of cancer stem cell regulation is poorly understood. Expression of NIK was analyzed by quantitative RT-PCR in BCSCs. NIK levels were manipulated through transfection of specific shRNAs or an expression vector. The effect of NIK in the cancer stem cell properties was assessed by mammosphere formation, mice xenografts and stem markers expression. BCSCs expressed higher levels of NIK and its inhibition through small hairpin (shRNA), reduced the expression of CSC markers and impaired clonogenicity and tumorigenesis. Genome-wide expression analyses suggested that NIK acts on ERK1/2 pathway to exert its activity. In addition, forced expression of NIK increased the BCSC population and enhanced breast cancer cell tumorigenicity. The in vivo relevance of these results is further supported by a tissue microarray of breast cancer samples in which we observed correlated expression of Aldehyde dehydrogenase (ALDH) and NIK protein. Our results support the essential involvement of NIK in BCSC phenotypic regulation via ERK1/2 and NF-κB.


Assuntos
Neoplasias da Mama/genética , Regulação Neoplásica da Expressão Gênica , Células-Tronco Neoplásicas/metabolismo , Proteínas Serina-Treonina Quinases/genética , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Células MCF-7 , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Células-Tronco Neoplásicas/patologia , Fenótipo , Proteínas Serina-Treonina Quinases/metabolismo , Interferência de RNA , Transdução de Sinais/genética , Transplante Heterólogo , Quinase Induzida por NF-kappaB
12.
Sci Rep ; 6: 23373, 2016 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-27021602

RESUMO

Oxygen or nutrient deprivation of early stage tumoral spheroids can be used to reliably mimic the initial growth of primary and metastatic cancer cells. However, cancer cell growth during the initial stages has not been fully explored using a genome-wide approach. Thus, in the present study, we investigated the transcriptome of breast cancer cells during the initial stages of tumoral growth using RNAseq in a model of Multicellular Tumor Spheroids (MTS). Network analyses showed that a metastatic signature was enriched as several adhesion molecules were deregulated, including EPCAM, E-cadherin, integrins and syndecans, which were further supported by an increase in cell migration. Interestingly, we also found that the cancer cells at this stage of growth exhibited a paradoxical hyperactivation of oxidative mitochondrial metabolism. In addition, we found a large number of regulated (long non coding RNA) lncRNAs, several of which were co-regulated with neighboring genes. The regulatory role of some of these lncRNAs on mRNA expression was demonstrated with gain of function assays. This is the first report of an early-stage MTS transcriptome, which not only reveals a complex expression landscape, but points toward an important contribution of long non-coding RNAs in the final phenotype of three-dimensional cellular models.


Assuntos
Regulação Neoplásica da Expressão Gênica , Esferoides Celulares/metabolismo , Transcriptoma/genética , Microambiente Tumoral/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Ciclo Celular/genética , Movimento Celular/genética , Feminino , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes/genética , Genoma Humano/genética , Humanos , Células MCF-7 , RNA Longo não Codificante/genética , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Esferoides Celulares/patologia
13.
Semin Cancer Biol ; 30: 79-87, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24747697

RESUMO

Given the multi-factorial nature of cancer, uncovering its metabolic alterations and evaluating their implications is a major challenge in biomedical sciences that will help in the optimal design of personalized treatments. The advance of high-throughput technologies opens an invaluable opportunity to monitor the activity at diverse biological levels and elucidate how cancer originates, evolves and responds under drug treatments. To this end, researchers are confronted with two fundamental questions: how to interpret high-throughput data and how this information can contribute to the development of personalized treatment in patients. A variety of schemes in systems biology have been suggested to characterize the phenotypic states associated with cancer by utilizing computational modeling and high-throughput data. These theoretical schemes are distinguished by the level of complexity of the biological mechanisms that they represent and by the computational approaches used to simulate them. Notably, these theoretical approaches have provided a proper framework to explore some distinctive metabolic mechanisms observed in cancer cells such as the Warburg effect. In this review, we focus on presenting a general view of some of these approaches whose application and integration will be crucial in the transition from local to global conclusions in cancer studies. We are convinced that multidisciplinary approaches are required to construct the bases of an integrative and personalized medicine, which has been and remains a fundamental task in the medicine of this century.


Assuntos
Modelos Biológicos , Neoplasias/metabolismo , Medicina de Precisão , Biologia de Sistemas , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA