Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Gut ; 73(10): 1618-1631, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-38684238

RESUMO

OBJECTIVE: Mutations in presenilin genes are the major cause of Alzheimer's disease. However, little is known about their expression and function in the gut. In this study, we identify the presenilins Psen1 and Psen2 as key molecules that maintain intestinal homoeostasis. DESIGN: Human inflammatory bowel disease (IBD) and control samples were analysed for Psen1 expression. Newly generated intestinal epithelium-specific Psen1-deficient, Psen2-deficient and inducible Psen1/Psen2 double-deficient mice were used to dissect the functional role of presenilins in intestinal homoeostasis. RESULTS: Psen1 expression was regulated in experimental gut inflammation and in patients with IBD. Induced deletion of Psen1 and Psen2 in mice caused rapid weight loss and spontaneous development of intestinal inflammation. Mice exhibited epithelial barrier disruption with bacterial translocation and deregulation of key pathways for nutrient uptake. Wasting disease was independent of gut inflammation and dysbiosis, as depletion of microbiota rescued Psen-deficient animals from spontaneous colitis development but not from weight loss. On a molecular level, intestinal epithelial cells lacking Psen showed impaired Notch signalling and dysregulated epithelial differentiation. CONCLUSION: Overall, our study provides evidence that Psen1 and Psen2 are important guardians of intestinal homoeostasis and future targets for barrier-promoting therapeutic strategies in IBD.


Assuntos
Doença de Alzheimer , Homeostase , Mucosa Intestinal , Presenilina-1 , Presenilina-2 , Animais , Camundongos , Presenilina-2/genética , Presenilina-2/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/imunologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , Humanos , Presenilina-1/genética , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/genética , Microbioma Gastrointestinal/fisiologia , Camundongos Knockout , Células Epiteliais/metabolismo , Transdução de Sinais , Disbiose , Modelos Animais de Doenças
2.
Gut ; 73(2): 282-297, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37884352

RESUMO

OBJECTIVE: We sought to investigate the role of interleukin (IL)-20 in IBD and experimental colitis. DESIGN: Experimental colitis was induced in mice deficient in components of the IL-20 and signal transducer and activator of transcription (STAT)2 signalling pathways. In vivo imaging, high-resolution mini-endoscopy and histology were used to assess intestinal inflammation. We further used RNA-sequencing (RNA-Seq), RNAScope and Gene Ontology analysis, western blot analysis and co-immunoprecipitation, confocal microscopy and intestinal epithelial cell (IEC)-derived three-dimensional organoids to investigate the underlying molecular mechanisms. Results were validated using samples from patients with IBD and non-IBD control subjects by a combination of RNA-Seq, organoids and immunostainings. RESULTS: In IBD, IL20 levels were induced during remission and were significantly higher in antitumour necrosis factor responders versus non-responders. IL-20RA and IL-20RB were present on IECs from patients with IBD and IL-20-induced STAT3 and suppressed interferon (IFN)-STAT2 signalling in these cells. In IBD, experimental dextran sulfate sodium (DSS)-induced colitis and mucosal healing, IECs were the main producers of IL-20. Compared with wildtype controls, Il20-/-, Il20ra-/- and Il20rb-/- mice were more susceptible to experimental DSS-induced colitis. IL-20 deficiency was associated with increased IFN/STAT2 activity in mice and IFN/STAT2-induced necroptotic cell death in IEC-derived organoids could be markedly blocked by IL-20. Moreover, newly generated Stat2ΔIEC mice, lacking STAT2 in IECs, were less susceptible to experimental colitis compared with wildtype controls and the administration of IL-20 suppressed colitis activity in wildtype animals. CONCLUSION: IL-20 controls colitis and mucosal healing by interfering with the IFN/STAT2 death signalling pathway in IECs. These results indicate new directions for suppressing gut inflammation by modulating IL-20-controlled STAT2 signals.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Humanos , Animais , Camundongos , Mucosa Intestinal/metabolismo , Colite/metabolismo , Interleucinas/metabolismo , Inflamação/metabolismo , Células Epiteliais/metabolismo , Doenças Inflamatórias Intestinais/genética , Sulfato de Dextrana/farmacologia , Camundongos Endogâmicos C57BL , Fator de Transcrição STAT2/metabolismo
3.
iScience ; 26(12): 108399, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38047086

RESUMO

Precision oncology approaches for patients with colorectal cancer (CRC) continue to lag behind other solid cancers. Functional precision oncology-a strategy that is based on perturbing primary tumor cells from cancer patients-could provide a road forward to personalize treatment. We extend this paradigm to measuring proteome activity landscapes by acquiring quantitative phosphoproteomic data from patient-derived organoids (PDOs). We show that kinase inhibitors induce inhibitor- and patient-specific off-target effects and pathway crosstalk. Reconstruction of the kinase networks revealed that the signaling rewiring is modestly affected by mutations. We show non-genetic heterogeneity of the PDOs and upregulation of stemness and differentiation genes by kinase inhibitors. Using imaging mass-cytometry-based profiling of the primary tumors, we characterize the tumor microenvironment (TME) and determine spatial heterocellular crosstalk and tumor-immune cell interactions. Collectively, we provide a framework for inferring tumor cell intrinsic signaling and external signaling from the TME to inform precision (immuno-) oncology in CRC.

4.
Int J Mol Sci ; 24(8)2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37108564

RESUMO

The paracaspase MALT1 is a crucial regulator of immune responses in various cellular contexts. Recently, there is increasing evidence suggesting that MALT1 might represent a novel key player in mucosal inflammation. However, the molecular mechanisms underlying this process and the targeted cell population remain unclear. In this study, we investigate the role of MALT1 proteolytic activity in the context of mucosal inflammation. We demonstrate a significant enrichment of MALT1 gene and protein expression in colonic epithelial cells of UC patients, as well as in the context of experimental colitis. Mechanistically we demonstrate that MALT1 protease function inhibits ferroptosis, a form of iron-dependent cell death, upstream of NF-κB signaling, which can promote inflammation and tissue damage in IBD. We further show that MALT1 activity contributes to STAT3 signaling, which is essential for the regeneration of the intestinal epithelium after injury. In summary, our data strongly suggests that the protease function of MALT1 plays a critical role in the regulation of immune and inflammatory responses, as well as mucosal healing. Understanding the mechanisms by which MALT1 protease function regulates these processes may offer novel therapeutic targets for the treatment of IBD and other inflammatory diseases.


Assuntos
Doenças Inflamatórias Intestinais , Transdução de Sinais , Humanos , Inflamação , Doenças Inflamatórias Intestinais/genética , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/genética , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/metabolismo , NF-kappa B/metabolismo , Proteólise , Células Epiteliais
5.
Gut ; 72(6): 1155-1166, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36261293

RESUMO

OBJECTIVE: Psen1 was previously characterised as a crucial factor in the pathogenesis of neurodegeneration in patients with Alzheimer's disease. Little, if any, is known about its function in the gut. Here, we uncovered an unexpected functional role of Psen1 in gut epithelial cells during intestinal tumourigenesis. DESIGN: Human colorectal cancer (CRC) and control samples were investigated for PSEN1 and proteins of theγ-secretase complex. Tumour formation was analysed in the AOM-DSS and Apc min/+ mouse models using newly generated epithelial-specific Psen1 deficient mice. Psen1 deficient human CRC cells were studied in a xenograft tumour model. Tumour-derived organoids were analysed for growth and RNA-Seq was performed to identify Psen1-regulated pathways. Tumouroids were generated to study EGFR activation and evaluation of the influence of prostanoids. RESULTS: PSEN1 is expressed in the intestinal epithelium and its level is increased in human CRC. Psen1-deficient mice developed only small tumours and human cancer cell lines deficient in Psen1 had a reduced tumourigenicity. Tumouroids derived from Psen1-deficient Apc min/+ mice exhibited stunted growth and reduced cell proliferation. On a molecular level, PSEN1 potentiated tumour cell proliferation via enhanced EGFR signalling and COX-2 production. Exogenous administration of PGE2 reversed the slow growth of PSEN1 deficient tumour cells via PGE2 receptor 4 (EP4) receptor signalling. CONCLUSIONS: Psen1 drives tumour development by increasing EGFR signalling via NOTCH1 processing, and by activating the COX-2-PGE2 pathway. PSEN1 inhibition could be a useful strategy in treatment of CRC.


Assuntos
Neoplasias Colorretais , Transdução de Sinais , Humanos , Camundongos , Animais , Ciclo-Oxigenase 2/metabolismo , Presenilina-1/genética , Transdução de Sinais/fisiologia , Neoplasias Colorretais/patologia , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Modelos Animais de Doenças , Receptores ErbB/metabolismo
6.
J Crohns Colitis ; 16(12): 1893-1910, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-35793807

RESUMO

BACKGROUND AND AIMS: Colorectal cancer [CRC] is one of the most frequent malignancies, but the molecular mechanisms driving cancer growth are incompletely understood. We characterised the roles of the cytokine IL-9 and Th9 cells in regulating CRC development. METHODS: CRC patient samples and samples from AOM/DSS treated mice were analysed for expression of IL-9, CD3, and PU.1 by FACS analysis and immunohistochemistry. IL-9 citrine reporter mice, IL-9 knockout mice, and PU.1 and GATA3 CD4-Cre conditional knockout mice were studied in the AOM/DSS model. DNA minicircles or hyper-IL-6 were used for overexpression of cytokines in vivo. Effects of IL-6 and IL-9 were determined in organoid and T cell cultures. Claudin2/3 expression was studied by western blotting and bacterial translocation by FISH. RESULTS: We uncovered a significant expansion of IL-9- and PU.1-expressing mucosal Th9 cells in CRC patients, with particularly high levels in patients with colitis-associated neoplasias. PU.1+ Th9 cells accumulated in experimental colorectal neoplasias. Deficiency of IL-9 or inactivation of PU.1 in T cells led to impaired tumour growth in vivo, suggesting a protumoral role of Th9 cells. In contrast, GATA3 inactivation did not affect Th9-mediated tumour growth. Mechanistically, IL-9 controls claudin2/3 expression and T cell-derived IL-6 production in colorectal tumours. IL-6 abrogated the anti-proliferative effects of IL-9 in epithelial organoids in vivo. IL-9-producing Th9 cells expand in CRC and control IL-6 production by T cells. CONCLUSIONS: IL-9 is a crucial regulator of tumour growth in colitis-associated neoplasias and emerges as potential target for therapy.


Assuntos
Colite , Neoplasias Colorretais , Camundongos , Animais , Interleucina-9/metabolismo , Interleucina-6/metabolismo , Linfócitos T Auxiliares-Indutores/patologia , Colite/patologia , Células Epiteliais/metabolismo , Citocinas/metabolismo , Neoplasias Colorretais/patologia , Camundongos Knockout , Camundongos Endogâmicos C57BL
7.
Int J Mol Sci ; 23(9)2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35562917

RESUMO

Current protocols converting human induced pluripotent stem cells (iPSCs) into induced microglia-like cells (iMGL) are either dependent on overexpression of transcription factors or require substantial experience in stem-cell technologies. Here, we developed an easy-to-use two-step protocol to convert iPSCs into functional iMGL via: (1) highly efficient differentiation of hematopoietic progenitor cells (HPCs) from iPSCs, and (2) optimized maturation of HPCs to iMGL. A sequential harvesting approach led to an increased HPC yield. The protocol implemented a freezing step, thus allowing HPC biobanking and flexible timing of differentiation into iMGL. Our iMGL responded adequately to the inflammatory stimuli LPS, and iMGL RNAseq analysis matched those of other frequently used protocols. Comparing three different coating modalities, we increased the iMGL yield by culturing on uncoated glass surfaces, thereby retaining differentiation efficiency and functional hallmarks of iMGL. In summary, we provide a high-quality, easy-to-use protocol, rendering generation and functional studies on iMGL an accessible lab resource.


Assuntos
Células-Tronco Pluripotentes Induzidas , Bancos de Espécimes Biológicos , Diferenciação Celular , Células-Tronco Hematopoéticas , Humanos , Microglia
8.
Cell Death Dis ; 13(1): 52, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-35022391

RESUMO

SMYD2 is a histone methyltransferase, which methylates both histone H3K4 as well as a number of non-histone proteins. Dysregulation of SMYD2 has been associated with several diseases including cancer. In the present study, we investigated whether and how SMYD2 might contribute to colorectal cancer. Increased expression levels of SMYD2 were detected in human and murine colon tumor tissues compared to tumor-free tissues. SMYD2 deficiency in colonic tumor cells strongly decreased tumor growth in two independent experimental cancer models. On a molecular level, SMYD2 deficiency sensitized colonic tumor cells to TNF-induced apoptosis and necroptosis without affecting cell proliferation. Moreover, we found that SMYD2 targeted RIPK1 and inhibited the phosphorylation of RIPK1. Finally, in a translational approach, pharmacological inhibition of SMYD2 attenuated colonic tumor growth. Collectively, our data show that SMYD2 is crucial for colon tumor growth and inhibits TNF-induced apoptosis and necroptosis.


Assuntos
Neoplasias do Colo , Necroptose , Animais , Apoptose , Neoplasias do Colo/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Humanos , Camundongos , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
9.
Gastroenterology ; 160(3): 925-928.e4, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33075345
10.
Front Immunol ; 11: 609400, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33613532

RESUMO

A diverse spectrum of immune cells populates the intestinal mucosa reflecting the continuous stimulation by luminal antigens. In lesions of patients with inflammatory bowel disease, an aberrant inflammatory process is characterized by a very prominent infiltrate of activated immune cells producing cytokines and chemokines. These mediators perpetuate intestinal inflammation or may contribute to mucosal protection depending on the cellular context. In order to further characterize this complex immune cell network in intestinal inflammation, we investigated the contribution of the chemokine receptor CCR8 to development of colitis using a mouse model of experimental inflammation. We found that CCR8-/- mice compared to wildtype controls developed strong weight loss accompanied by increased histological and endoscopic signs of mucosal damage. Further experiments revealed that this gut protective function of CCR8 seems to be selectively mediated by the chemotactic ligand CCL1, which was particularly produced by intestinal macrophages during colitis. Moreover, we newly identified CCR8 expression on a subgroup of intestinal innate lymphoid cells producing IFN-γ and linked a functional CCL1/CCR8 axis with their abundance in the gut. Our data therefore suggest that this pathway supports tissue-specific ILC functions important for intestinal homeostasis. Modulation of this regulatory circuit may represent a new strategy to treat inflammatory bowel disease in humans.


Assuntos
Quimiocina CCL1/imunologia , Colite/imunologia , Imunidade Inata/imunologia , Interferon gama/imunologia , Mucosa Intestinal/imunologia , Linfócitos/imunologia , Receptores CCR8/imunologia , Animais , Citocinas/imunologia , Modelos Animais de Doenças , Feminino , Humanos , Inflamação/imunologia , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA