Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Tuberculosis (Edinb) ; 147: 102503, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38729070

RESUMO

Mycobacterium abscessus, a rapidly growing nontuberculous mycobacterium, is increasingly recognized as an important pathogen of the human lung, disproportionally affecting people with cystic fibrosis (CF) and other susceptible individuals with non-CF bronchiectasis and compromised immune functions. M. abscessus infections are extremely difficult to treat due to intrinsic resistance to many antibiotics, including most anti-tuberculous drugs. Current standard-of-care chemotherapy is long, includes multiple oral and parenteral repurposed drugs, and is associated with significant toxicity. The development of more effective oral antibiotics to treat M. abscessus infections has thus emerged as a high priority. While murine models have proven instrumental in predicting the efficacy of therapeutic treatments for M. tuberculosis infections, the preclinical evaluation of drugs against M. abscessus infections has proven more challenging due to the difficulty of establishing a progressive, sustained, pulmonary infection with this pathogen in mice. To address this issue, a series of three workshops were hosted in 2023 by the Cystic Fibrosis Foundation (CFF) and the National Institute of Allergy and Infectious Diseases (NIAID) to review the current murine models of M. abscessus infections, discuss current challenges and identify priorities toward establishing validated and globally harmonized preclinical models. This paper summarizes the key points from these workshops. The hope is that the recommendations that emerged from this exercise will facilitate the implementation of informative murine models of therapeutic efficacy testing across laboratories, improve reproducibility from lab-to-lab and accelerate preclinical-to-clinical translation.


Assuntos
Modelos Animais de Doenças , Infecções por Mycobacterium não Tuberculosas , Mycobacterium abscessus , Animais , Mycobacterium abscessus/efeitos dos fármacos , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Infecções por Mycobacterium não Tuberculosas/microbiologia , Camundongos , Antibacterianos/uso terapêutico , Antibacterianos/farmacologia , Humanos , Avaliação Pré-Clínica de Medicamentos/métodos , Pulmão/microbiologia , Pulmão/efeitos dos fármacos , Pulmão/imunologia
2.
ACS Infect Dis ; 10(4): 1379-1390, 2024 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-38511206

RESUMO

Two lipoglycans, lipomannan (LM) and lipoarabinomannan (LAM), play various, albeit incompletely defined, roles in the interactions of mycobacteria with the host. Growing evidence points to the modification of LM and LAM with discrete covalent substituents as a strategy used by these bacteria to modulate their biological activities. One such substituent, originally identified in Mycobacterium tuberculosis (Mtb), is a 5-methylthio-d-xylose (MTX) sugar, which accounts for the antioxidative properties of LAM. The widespread distribution of this motif across Mtb isolates from several epidemiologically important lineages have stimulated interest in MTX-modified LAM as a biomarker of tuberculosis infection. Yet, several lines of evidence indicate that MTX may not be restricted to Mtb and that this motif may substitute more acceptors than originally thought. Using a highly specific monoclonal antibody to the MTX capping motif of Mtb LAM, we here show that MTX motifs not only substitute the mannoside caps of LAM but also the mannan core of LM in Mtb. MTX substituents were also found on the LM and LAM of pathogenic, slow-growing nontuberculous mycobacteria. The presence of MTX substituents on the LM and LAM from Mtb enhances the pro-apoptotic properties of both lipoglycans on LPS-stimulated THP-1 macrophages. A comparison of the cytokines and chemokines produced by resting and LPS-activated THP-1 cells upon exposure to MTX-proficient versus MTX-deficient LM further indicates that MTX substituents confer anti-inflammatory properties upon LM. These findings add to our understanding of the glycan-based strategies employed by slow-growing pathogenic mycobacteria to alter the host immune response to infection.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Lipopolissacarídeos , Tuberculose/microbiologia
3.
Pharmaceutics ; 15(6)2023 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-37376207

RESUMO

Spectinamides 1599 and 1810 are lead spectinamide compounds currently under preclinical development to treat multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis. These compounds have previously been tested at various combinations of dose level, dosing frequency, and route of administration in mouse models of Mycobacterium tuberculosis (Mtb) infection and in healthy animals. Physiologically based pharmacokinetic (PBPK) modeling allows the prediction of the pharmacokinetics of candidate drugs in organs/tissues of interest and extrapolation of their disposition across different species. Here, we have built, qualified, and refined a minimalistic PBPK model that can describe and predict the pharmacokinetics of spectinamides in various tissues, especially those relevant to Mtb infection. The model was expanded and qualified for multiple dose levels, dosing regimens, routes of administration, and various species. The model predictions in mice (healthy and infected) and rats were in reasonable agreement with experimental data, and all predicted AUCs in plasma and tissues met the two-fold acceptance criteria relative to observations. To further explore the distribution of spectinamide 1599 within granuloma substructures as encountered in tuberculosis, we utilized the Simcyp granuloma model combined with model predictions in our PBPK model. Simulation results suggest substantial exposure in all lesion substructures, with particularly high exposure in the rim area and macrophages. The developed model may be leveraged as an effective tool in identifying optimal dose levels and dosing regimens of spectinamides for further preclinical and clinical development.

4.
Antimicrob Agents Chemother ; 67(6): e0016223, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37154689

RESUMO

Intrinsic and acquired antibiotic resistance in Mycobacterium abscessus presents challenges in infection control, and new therapeutic strategies are needed. Bacteriophage therapy shows promise, but variabilities in M. abscessus phage susceptibility limits its broader utility. We show here that a mycobacteriophage-encoded lysin B (LysB) efficiently and rapidly kills both smooth- and rough-colony morphotype M. abscessus strains and reduces the pulmonary bacterial load in mice. LysB aerosolization presents a plausible treatment for pulmonary M. abscessus infections.


Assuntos
Micobacteriófagos , Infecções por Mycobacterium não Tuberculosas , Mycobacterium abscessus , Animais , Camundongos , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Infecções por Mycobacterium não Tuberculosas/microbiologia , Pulmão , Antibacterianos/farmacologia
5.
Tuberculosis (Edinb) ; 140: 102342, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37120915

RESUMO

Spectinamides are a novel series of spectinomycin analogs being developed for the treatment of tuberculosis. The preclinical lead spectinamide 1599 is an antituberculosis drug that possesses robust in vivo efficacy, good pharmacokinetic properties, and excellent safety profiles in rodents. In individuals infected with Mycobacterium tuberculosis or Mycobacterium bovis, causative agents of tuberculosis, the host immune system is capable of restraining these mycobacteria within granulomatous lesions. The harsh microenvironmental conditions of these granuloma lead to phenotypic transformation of mycobacteria. Phenotypically transformed bacteria display suboptimal growth, or complete growth arrest and are frequently associated with drug tolerance. Here we quantified the effect of spectinamide 1599 on log-phase and phenotypically tolerant isoforms of Mycobacterium bovis BCG using various in vitro approaches as a first indicator of spectinamide 1599 activity against various mycobacterial isoforms. We also used the hollow fiber infection model to establish time-kill curves and deployed pharmacokinetic/pharmacodynamic modeling to characterize the activity differences of spectinamide 1599 towards the different phenotypic subpopulations. Our results indicate that spectinamide 1599 is more efficacious against log phase bacteria when compared to its activity against other phenotypically tolerant forms such as acid phase bacteria and hypoxic phase bacteria, a behavior similar to the established antituberculosis drug isoniazid.


Assuntos
Mycobacterium bovis , Mycobacterium tuberculosis , Tuberculose , Humanos , Espectinomicina , Mycobacterium tuberculosis/genética , Antituberculosos/uso terapêutico
6.
Tuberculosis (Edinb) ; 138: 102288, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36470124

RESUMO

The benzothiazole amide CRS0393 demonstrated excellent in vitro activity against nontuberculous mycobacteria (NTM), including M. abscessus isolates from cystic fibrosis (CF) patients, with minimum inhibitory concentrations (MICs) of ≤0.03-0.5 µg/mL. The essential transport protein MmpL3 was confirmed as the target via analysis of spontaneous resistant mutants and further biological profiling. In mouse pharmacokinetic studies, intratracheal instillation of a single dose of CRS0393 resulted in high concentrations of drug in epithelial lining fluid (ELF) and lung tissue, which remained above the M. abscessus MIC for at least 9 hours post-dose. This exposure resulted in a penetration ratio of 261 for ELF and 54 for lung tissue relative to plasma. CRS0393 showed good oral bioavailability, particularly when formulated in kolliphor oil, with a lung-to-plasma penetration ratio ranging from 0.5 to 4. CRS0393 demonstrated concentration-dependent reduction of intracellular M. abscessus in a THP-1 macrophage infection model. CRS0393 was well tolerated following intranasal administration (8 mg/kg) or oral dosing (25 mg/kg) once daily for 28 days in dexamethasone-treated C3HeB/FeJ mice. Efficacy against M. abscessus strain 103 was achieved via the intranasal route, while oral dosing will need further optimization. CRS0393 holds promise for development as a novel agent with broad antimycobacterial activity.


Assuntos
Fibrose Cística , Infecções por Mycobacterium não Tuberculosas , Mycobacterium tuberculosis , Camundongos , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Micobactérias não Tuberculosas , Pulmão , Fibrose Cística/tratamento farmacológico , Fibrose Cística/microbiologia , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Infecções por Mycobacterium não Tuberculosas/microbiologia , Testes de Sensibilidade Microbiana
7.
Front Microbiol ; 12: 743126, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34777289

RESUMO

Characterizing Mycobacterium abscessus complex (MABSC) biofilms under host-relevant conditions is essential to the design of informed therapeutic strategies targeted to this persistent, drug-tolerant, population of extracellular bacilli. Using synthetic cystic fibrosis medium (SCFM) which we previously reported to closely mimic the conditions encountered by MABSC in actual cystic fibrosis (CF) sputum and a new model of biofilm formation, we show that MABSC biofilms formed under these conditions are substantially different from previously reported biofilms grown in standard laboratory media in terms of their composition, gene expression profile and stress response. Extracellular DNA (eDNA), mannose-and glucose-containing glycans and phospholipids, rather than proteins and mycolic acids, were revealed as key extracellular matrix (ECM) constituents holding clusters of bacilli together. None of the environmental cues previously reported to impact biofilm development had any significant effect on SCFM-grown biofilms, most likely reflecting the fact that SCFM is a nutrient-rich environment in which MABSC finds a variety of ways of coping with stresses. Finally, molecular determinants were identified that may represent attractive new targets for the development of adjunct therapeutics targeting MABSC biofilms in persons with CF.

8.
ACS Infect Dis ; 6(10): 2661-2671, 2020 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-32866371

RESUMO

MenJ, a flavoprotein oxidoreductase, is responsible for the saturation of the ß-isoprene unit of mycobacterial menaquinone, resulting in the conversion of menaquinone with nine isoprene units (MK-9) to menaquinone with nine isoprene units where the double bond in the second unit is reduced [MK-9(II-H2)]. The hydrogenation of MK-9 increases the efficiency of the mycobacterial electron transport system, whereas the deletion of MenJ results in decreased survival of the bacteria inside J774A.1 macrophage-like cells but is not required for growth in culture. Thus, it was suggested that MenJ may represent a contextual drug target in M. tuberculosis, that is, a drug target that is valid only in the context of an infected macrophage. However, it was unclear if the conversion of MK-9 to MK-9(II-H2) or the MenJ protein itself was responsible for bacterial survival. In order to resolve this issue, a plasmid expressing folded, full-length, inactive MenJ was engineered. Primary sequence analysis data revealed that MenJ shares conserved FAD binding, NADH binding, and catalytic and C-terminal motifs with archaeal geranylgeranyl reductases. A MenJ mutant deficient in any one of these motifs is devoid of reductase activity. Therefore, point mutations of highly conserved amino acids in the conserved motifs were generated and the recombinant proteins were monitored for conformational changes by circular dichroism and oxidoreductase activity. The mutational analysis indicates that amino acids tryptophan 215 (W215) and cysteine 46 (C46) of M. tuberculosis MenJ, conserved in known archaeal geranylgeranyl reductases and putative menaquinone saturases, are essential to the hydrogenation of MK-9. The mutation of either C46 to serine (C46S) or W215 to leucine (W215L) in MenJ completely abolishes the catalytic activity in vitro, and menJ knockout strains of M. tuberculosis expressing either the C46S or W215L mutant protein are unable to convert MK-9 to MK-9(II-H2) but survive inside the J774A.1 cells. Thus, surprisingly, the survival of M. tuberculosis in J774A.1 cells is dependent on the expression of MenJ rather than its oxidoreductase activity, the conversion of MK-9 to MK-9(II-H2) as previously hypothesized. Overall, the current data suggest that MenJ is a moonlighting protein.


Assuntos
Mycobacterium tuberculosis , Dicroísmo Circular , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Oxirredução , Proteínas Recombinantes/metabolismo , Vitamina K 2
9.
J Antimicrob Chemother ; 75(7): 1889-1894, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32294173

RESUMO

BACKGROUND: Mycobacterium abscessus causes chronic pulmonary infections. Owing to its resistance to most classes of antibiotics, treatment is complex and cure rates are only 45%. Tigecycline is active against M. abscessus, but severe toxicity and the need for IV administration limit its use. OBJECTIVES: To assess the potential of inhaled tigecycline as a treatment for M. abscessus pulmonary disease, by measuring its efficacy in a mouse model of chronic M. abscessus pulmonary disease, establishing the intracellular activity of tigecycline against M. abscessus in human macrophages and measuring the activity of tigecycline in the sputum of cystic fibrosis patients. METHODS: We infected GM-CSF knockout mice with M. abscessus by intrapulmonary aerosol. Infected mice were treated with tigecycline in 0.25, 1.25 and 2.5 mg doses, by inhalation, or untreated, for 28 days. Tigecycline was added to human peripheral blood-derived macrophages infected with M. abscessus to assess its intracellular activity. We performed a time-kill kinetics experiment of tigecycline against M. abscessus with and without sputum of cystic fibrosis patients. RESULTS: Inhaled tigecycline proved highly effective against M. abscessus in GM-CSF knockout mice. The effect was dose dependent. Tigecycline showed potent activity against M. abscessus in macrophages and retained most of its activity in the presence of sputum of cystic fibrosis patients. CONCLUSIONS: Inhaled tigecycline may represent a viable treatment option for M. abscessus pulmonary disease, where treatment outcomes are currently very poor. A stable and safe formulation is required to proceed to further pharmacodynamic studies and ultimately clinical trials.


Assuntos
Pneumopatias , Infecções por Mycobacterium não Tuberculosas , Mycobacterium abscessus , Animais , Antibacterianos/uso terapêutico , Humanos , Pneumopatias/tratamento farmacológico , Camundongos , Camundongos Knockout , Testes de Sensibilidade Microbiana , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Tigeciclina
10.
PLoS One ; 13(8): e0202941, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30142182

RESUMO

BACKGROUND: Free-living amoebae (FLA) are voracious feeders, consuming bacteria and other microbes during colonization of the phytobiome. FLA are also known to secrete bacteriocidal or bacteriostatic compounds into their growth environment. METHODOLOGY AND PRINCIPAL FINDINGS: Here, we explore the impacts of co-cultivation of five FLA species, including Acanthamoeba castellanii, A. lenticulata, A. polyphaga, Dictyostelium discoideum and Vermamoeba vermiformis, on survival of two devastating bacterial pathogens of rice, Xanthomonas oryzae pathovars (pv.) oryzae and oryzicola. In co-cultivation assays, the five FLA species were either bacteriostatic or bactericidal to X. oryzae pv. oryzae and X. oryzae pv. oryzicola. Despite these effects, bacteria were rarely detected inside amoebal cells. Furthermore, amoebae did not disrupt X. oryzae biofilms. The bactericidal effects persisted when bacteria were added to a cell-free supernatant from amoebal cultures, suggesting some amoebae produce an extracellular bactericidal compound. CONCLUSIONS/SIGNIFICANCE: This work establishes novel, basal dynamics between important plant pathogenic bacteria and diverse amoebae, and lays the framework for future mechanistic studies.


Assuntos
Amoeba/fisiologia , Oryza/microbiologia , Xanthomonas/fisiologia , Trofozoítos/fisiologia , Xanthomonas/citologia
11.
Environ Microbiol ; 19(10): 4010-4021, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28585299

RESUMO

Bovine tuberculosis (TB) is a zoonotic disease caused by Mycobacterium bovis. Despite intensive TB control campaigns, there are sporadic outbreaks of bovine TB in regions declared TB free. It is unclear how M. bovis is able to survive in the environment for long periods of time. We hypothesized that Free-living amoebae (FLA), as ubiquitous inhabitants of soil and water, may act as long-term reservoirs of M. bovis in the environment. In our model, M. bovis would be taken up by amoebal trophozoites, which are the actively feeding, replicating and mobile form of FLA. Upon exposure to hostile environmental conditions, infected FLA will encyst and provide an intracellular niche allowing their M. bovis cargo to persist for extended periods of time. Here, we show that five FLA species (Acanthamoeba polyphaga, Acanthamoeba castellanii, Acanthamoeba lenticulata, Vermamoeba vermiformis and Dictyostellium discoideum) are permissive to M. bovis infection and that the M. bovis bacilli may survive within the cysts of four of these species for over 60 days. We further show that exposure of M. bovis-infected trophozoites and cysts to Balb/c mice leads to pulmonary TB. This work describes for the first time that FLA carrying M. bovis can transmit TB.


Assuntos
Amebozoários/microbiologia , Reservatórios de Doenças/microbiologia , Mycobacterium bovis/crescimento & desenvolvimento , Acanthamoeba/microbiologia , Animais , Bovinos , Dictyostelium/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Mycobacterium bovis/patogenicidade , Tuberculose Bovina/microbiologia , Tuberculose Bovina/transmissão
12.
Dis Model Mech ; 8(6): 591-602, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26035867

RESUMO

Cost-effective animal models that accurately reflect the pathological progression of pulmonary tuberculosis are needed to screen and evaluate novel tuberculosis drugs and drug regimens. Pulmonary disease in humans is characterized by a number of heterogeneous lesion types that reflect differences in cellular composition and organization, extent of encapsulation, and degree of caseous necrosis. C3HeB/FeJ mice have been increasingly used to model tuberculosis infection because they produce hypoxic, well-defined granulomas exhibiting caseous necrosis following aerosol infection with Mycobacterium tuberculosis. A comprehensive histopathological analysis revealed that C3HeB/FeJ mice develop three morphologically distinct lesion types in the lung that differ with respect to cellular composition, degree of immunopathology and control of bacterial replication. Mice displaying predominantly the fulminant necrotizing alveolitis lesion type had significantly higher pulmonary bacterial loads and displayed rapid and severe immunopathology characterized by increased mortality, highlighting the pathological role of an uncontrolled granulocytic response in the lung. Using a highly sensitive novel fluorescent acid-fast stain, we were able to visualize the spatial distribution and location of bacteria within each lesion type. Animal models that better reflect the heterogeneity of lesion types found in humans will permit more realistic modeling of drug penetration into solid caseous necrotic lesions and drug efficacy testing against metabolically distinct bacterial subpopulations. A more thorough understanding of the pathological progression of disease in C3HeB/FeJ mice could facilitate modulation of the immune response to produce the desired pathology, increasing the utility of this animal model.


Assuntos
Aerossóis/administração & dosagem , Microambiente Celular , Mycobacterium tuberculosis/fisiologia , Tuberculose/microbiologia , Tuberculose/patologia , Animais , Peso Corporal , Contagem de Colônia Microbiana , Progressão da Doença , Fluorescência , Ouro , Cinética , Pulmão/microbiologia , Pulmão/patologia , Camundongos Endogâmicos C3H , Mycobacterium tuberculosis/crescimento & desenvolvimento , Coloração e Rotulagem , Análise de Sobrevida , Fatores de Tempo
13.
J Biomed Mater Res A ; 103(9): 2864-74, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25684281

RESUMO

Inflammatory responses to biomaterials heavily influence the environment surrounding implanted devices, often producing foreign-body reactions. The macrophage is a key immunomodulatory cell type consistently associated with implanted biomaterials and routinely used in short-term in vitro cell studies of biomaterials aiming to reproduce host responses. Inconsistencies within these studies, including differently sourced cells, different durations of culture, and assessment of different activation markers, lead to many conflicting results in vitro that confound consistency and conclusions. We hypothesize that different experimentally popular monocyte-macrophage cell types have intrinsic in vitro culture-specific differences that yield conflicting results. Recent studies demonstrate changes in cultured macrophage cytokine expression over time, leading to the hypothesis that changes in macrophage phenotype also occur in response to extended culture. Here, macrophage cells of different transformed and primary-derived origins were cultured for 21 days on model polymer biomaterials. Cell type-based differences in morphology and cytokine/chemokine expression as well as changes in cell surface biomarkers associated with differentiation stage, activation state, and adhesion were compared. Results reflect consistent macrophage development toward an M2 phenotype via up-regulation of the macrophage mannose receptor for all cell types following 21-day extended culture. Significantly, implanted biomaterials experiencing the foreign-body response and encapsulation in vivo often elicit a shift toward an analogous M2 macrophage phenotype. In vitro "default" of macrophage cultures, regardless of lineage, to this M2 state in the presence of biomaterials at long culture periods is not recognized, but has important implications to in vitro modeling of in vivo host response.


Assuntos
Materiais Biocompatíveis/efeitos adversos , Técnicas de Cultura de Células/métodos , Macrófagos/citologia , Animais , Materiais Biocompatíveis/química , Contagem de Células , Diferenciação Celular , Linhagem Celular , Forma Celular , Citocinas/metabolismo , Reação a Corpo Estranho/imunologia , Ativação de Macrófagos , Macrófagos/classificação , Macrófagos/imunologia , Teste de Materiais , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Propriedades de Superfície , Fatores de Tempo
14.
PLoS Negl Trop Dis ; 8(12): e3405, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25521850

RESUMO

Leprosy is a curable neglected disease of humans caused by Mycobacterium leprae that affects the skin and peripheral nerves and manifests clinically in various forms ranging from self-resolving, tuberculoid leprosy to lepromatous leprosy having significant pathology with ensuing disfiguration disability and social stigma. Despite the global success of multi-drug therapy (MDT), incidences of clinical leprosy have been observed in individuals with no apparent exposure to other cases, suggestive of possible non-human sources of the bacteria. In this study we show that common free-living amoebae (FLA) can phagocytose M. leprae, and allow the bacillus to remain viable for up to 8 months within amoebic cysts. Viable bacilli were extracted from separate encysted cocultures comprising three common Acanthamoeba spp.: A. lenticulata, A. castellanii, and A. polyphaga and two strains of Hartmannella vermiformis. Trophozoites of these common FLA take up M. leprae by phagocytosis. M. leprae from infected trophozoites induced to encyst for long-term storage of the bacilli emerged viable by assessment of membrane integrity. The majority (80%) of mice that were injected with bacilli extracted from 35 day cocultures of encysted/excysted A. castellanii and A. polyphaga showed lesion development that was similar to mice challenged with fresh M. leprae from passage mice albeit at a slower initial rate. Mice challenged with coculture-extracted bacilli showed evidence of acid-fast bacteria and positive PCR signal for M. leprae. These data support the conclusion that M. leprae can remain viable long-term in environmentally ubiquitous FLA and retain virulence as assessed in the nu/nu mouse model. Additionally, this work supports the idea that M. leprae might be sustained in the environment between hosts in FLA and such residence in FLA may provide a macrophage-like niche contributing to the higher-than-expected rate of leprosy transmission despite a significant decrease in human reservoirs due to MDT.


Assuntos
Amoeba/microbiologia , Mycobacterium leprae/patogenicidade , Animais , Técnicas de Cocultura , Humanos , Macrófagos/imunologia , Camundongos , Camundongos Nus , Mycobacterium leprae/crescimento & desenvolvimento , Fagocitose , Virulência
15.
J Antimicrob Chemother ; 69(4): 1057-64, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24222613

RESUMO

OBJECTIVES: Of the non-tuberculous mycobacteria, Mycobacterium abscessus is particularly refractory to antimicrobial therapy and new agents with activity against these pathogens are urgently needed. The screening of candidate antimicrobial agents against M. abscessus requires a relevant and reproducible animal model of chronic infection. Granulocyte-macrophage colony-stimulating factor knockout (GM-CSF KO) mice were used to develop a new animal model of chronic pulmonary M. abscessus infection that can be used for preclinical efficacy testing of antimicrobial drugs. METHODS: GM-CSF KO mice were infected with a clinical isolate of M. abscessus via intrapulmonary aerosol delivery using a microsprayer device. The clinical condition, histology and cfu of M. abscessus-infected GM-CSF KO mice were evaluated over a period of 4 months. Mice were treated with azithromycin (100 mg/kg) by oral gavage and the clinical condition, histology and bacterial burden was determined after 2 weeks of treatment. RESULTS: We show that pulmonary infection of GM-CSF KO mice with M. abscessus results in a chronic pulmonary infection that lends itself to preclinical testing of new antimicrobial drugs against this bacterium. Azithromycin treatment of M. abscessus-infected GM-CSF KO mice resulted in a lower bacterial burden in the lungs and spleen, weight gain and significant improvement in lung pathology. CONCLUSIONS: Intrapulmonary aerosol infection of GM-CSF KO mice with M. abscessus is a useful animal model for studying pathogenesis as well as pre-clinical testing of new compounds against M. abscessus in acute or chronic phases of infection.


Assuntos
Antibacterianos/uso terapêutico , Azitromicina/uso terapêutico , Fator Estimulador de Colônias de Granulócitos e Macrófagos/deficiência , Infecções por Mycobacterium/tratamento farmacológico , Mycobacterium/efeitos dos fármacos , Pneumonia Bacteriana/tratamento farmacológico , Animais , Carga Bacteriana , Doença Crônica , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos/métodos , Histocitoquímica , Pulmão/microbiologia , Pulmão/patologia , Camundongos , Camundongos Knockout , Infecções por Mycobacterium/microbiologia , Infecções por Mycobacterium/patologia , Pneumonia Bacteriana/microbiologia , Pneumonia Bacteriana/patologia , Baço/microbiologia
16.
J Biol Chem ; 288(1): 382-92, 2013 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-23155047

RESUMO

Mycobacteria are shaped by a thick envelope made of an array of uniquely structured lipids and polysaccharides. However, the spatial organization of these molecules remains unclear. Here, we show that exposure to an esterase from Mycobacterium smegmatis (Msmeg_1529), hydrolyzing the ester linkage of trehalose dimycolate in vitro, triggers rapid and efficient lysis of Mycobacterium tuberculosis, Mycobacterium bovis BCG, and Mycobacterium marinum. Exposure to the esterase immediately releases free mycolic acids, while concomitantly depleting trehalose mycolates. Moreover, lysis could be competitively inhibited by an excess of purified trehalose dimycolate and was abolished by a S124A mutation affecting the catalytic activity of the esterase. These findings are consistent with an indispensable structural role of trehalose mycolates in the architectural design of the exposed surface of the mycobacterial envelope. Importantly, we also demonstrate that the esterase-mediated rapid lysis of M. tuberculosis significantly improves its detection in paucibacillary samples.


Assuntos
Hidrolases de Éster Carboxílico/química , Fatores Corda/biossíntese , Esterases/química , Mycobacterium/enzimologia , Trifosfato de Adenosina/química , Antibacterianos/farmacologia , Antituberculosos/farmacologia , Hidrolases de Éster Carboxílico/metabolismo , Catálise , Fatores Corda/química , Relação Dose-Resposta a Droga , Esterases/metabolismo , Bicamadas Lipídicas/química , Lipídeos/química , Trealose/química
17.
PLoS One ; 5(6): e11108, 2010 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-20559431

RESUMO

A unique hallmark of tuberculosis is the granulomatous lesions formed in the lung. Granulomas can be heterogeneous in nature and can develop a necrotic, hypoxic core which is surrounded by an acellular, fibrotic rim. Studying bacilli in this in vivo microenvironment is problematic as Mycobacterium tuberculosis can change its phenotype and also become acid-fast negative. Under in vitro models of differing environments, M. tuberculosis alters its metabolism, transcriptional profile and rate of replication. In this study, we investigated whether these phenotypic adaptations of M. tuberculosis are unique for certain environmental conditions and if they could therefore be used as differential markers. Bacilli were studied using fluorescent acid-fast auramine-rhodamine targeting the mycolic acid containing cell wall, and immunofluorescence targeting bacterial proteins using an anti-M. tuberculosis whole cell lysate polyclonal antibody. These techniques were combined and simultaneously applied to M. tuberculosis in vitro culture samples and to lung sections of M. tuberculosis infected mice and guinea pigs. Two phenotypically different subpopulations of M. tuberculosis were found in stationary culture whilst three subpopulations were found in hypoxic culture and in lung sections. Bacilli were either exclusively acid-fast positive, exclusively immunofluorescent positive or acid-fast and immunofluorescent positive. These results suggest that M. tuberculosis exists as multiple populations in most conditions, even within seemingly a single microenvironment. This is relevant information for approaches that study bacillary characteristics in pooled samples (using lipidomics and proteomics) as well as in M. tuberculosis drug development.


Assuntos
Mycobacterium tuberculosis/metabolismo , Animais , Sequência de Bases , Sondas de DNA , Modelos Animais de Doenças , Feminino , Cobaias , Hibridização in Situ Fluorescente , Camundongos , Microscopia de Fluorescência , Mycobacterium tuberculosis/classificação , Fenótipo
18.
J Leukoc Biol ; 88(1): 159-68, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20360403

RESUMO

Alveolar macrophages and BDMCs undergo sequential biochemical changes during the chronic inflammatory response to chemically induced lung carcinogenesis in mice. Herein, we examine two chronic lung inflammation models-repeated exposure to BHT and infection with Mycobacterium tuberculosis-to establish whether similar macrophage phenotype changes occur in non-neoplastic pulmonary disease. Exposure to BHT or M. tuberculosis results in pulmonary inflammation characterized by an influx of macrophages, followed by systemic effects on the BM and other organs. In both models, pulmonary IFN-gamma and IL-4 production coincided with altered polarization of alveolar macrophages. Soon after BHT administration or M. tuberculosis infection, IFN-gamma content in BALF increased, and BAL macrophages became classically (M1) polarized, as characterized by increased expression of iNOS. As inflammation progressed in both models, the amount of BALF IFN-gamma content and BAL macrophage iNOS expression decreased, and BALF IL-4 content and macrophage arginase I expression rose, indicating alternative/M2 polarization. Macrophages present in M. tuberculosis-induced granulomas remained M1-polarized, implying that these two pulmonary macrophage populations, alveolar and granuloma-associated, are exposed to different activating cytokines. BDMCs from BHT-treated mice displayed polarization profiles similar to alveolar macrophages, but BDMCs in M. tuberculosis-infected mice did not become polarized. Thus, only alveolar macrophages in these two models of chronic lung disease exhibit a similar progression of polarization changes; polarization of BDMCs was specific to BHT-induced pulmonary inflammation, and polarization of granuloma macrophages was specific to the M. tuberculosis infection.


Assuntos
Células da Medula Óssea/citologia , Macrófagos Alveolares/fisiologia , Monócitos/fisiologia , Pneumonia/imunologia , Animais , Hidroxitolueno Butilado/toxicidade , Polaridade Celular , Doença Crônica , Interferon gama/biossíntese , Interleucina-4/biossíntese , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Tuberculose/imunologia
19.
Am J Pathol ; 175(1): 161-70, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19528351

RESUMO

The implantation of synthetic biomaterials initiates the foreign body response (FBR), which is characterized by macrophage infiltration, foreign body giant cell formation, and fibrotic encapsulation of the implant. The FBR is orchestrated by a complex network of immune modulators, including diverse cell types, soluble mediators, and unique cell surface interactions. The specific tissue locations, expression patterns, and spatial distribution of these immune modulators around the site of implantation are not clear. This study describes a model for studying the FBR in vivo and specifically evaluates the spatial relationship of immune modulators. We modified a biomaterials implantation in vivo model that allowed for cross-sectional in situ analysis of the FBR. Immunohistochemical techniques were used to determine the localization of soluble mediators, ie, interleukin (IL)-4, IL-13, IL-10, IL-6, transforming growth factor-beta, tumor necrosis factor-alpha, interferon-gamma, and MCP-1; specific cell types, ie, macrophages, neutrophils, fibroblasts, and lymphocytes; and cell surface markers, ie, F4/80, CD11b, CD11c, and Ly-6C, at early, middle, and late stages of the FBR in subcutaneous implant sites. The cytokines IL-4, IL-13, IL-10, and transforming growth factor-beta were localized to implant-adherent cells that included macrophages and foreign body giant cells. A better understanding of the FBR in vivo will allow the development of novel strategies to enhance biomaterial implant design to achieve better performance and safety of biomedical devices at the site of implant.


Assuntos
Materiais Biocompatíveis/efeitos adversos , Reação a Corpo Estranho/imunologia , Reação a Corpo Estranho/patologia , Implantes Experimentais/efeitos adversos , Animais , Citocinas/biossíntese , Feminino , Reação a Corpo Estranho/etiologia , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL
20.
Am J Respir Cell Mol Biol ; 41(2): 136-45, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19097989

RESUMO

Mice infected for 60 days with Mycobacterium tuberculosis were treated with aerosolized XCL1-targeting small interfering RNA (siRNA) to induce local and transient suppression of XCL1/lymphotactin (an important chemokine in tuberculoid granuloma formation). The local pulmonary siRNA therapy resulted in a 50% decrease in the total amount of xcl1 gene transcripts at 3 days, and 40 to 50% protein suppression 3 and 5 days after treatment. Reduced XCL1 expression in the lungs was associated with decreased numbers of T lymphocytes, reduction in the IFN-gamma response, disorganized granulomatous lesions, and higher fibrosis when compared with control mice treated with either PBS or nontargeting siRNA. This indicates that a transient but strong modulation of the production of XCL1 in the lungs has a significant effect on the influx of IFN-gamma-secreting T cells, as well as local pathology, but without significantly altering containment of the infection.


Assuntos
Quimiocinas C/genética , Mycobacterium tuberculosis/imunologia , RNA Interferente Pequeno/administração & dosagem , Tuberculose Pulmonar , Administração por Inalação , Aerossóis , Animais , Quimiocinas C/metabolismo , Feminino , Fibrose/patologia , Inativação Gênica , Humanos , Interferon gama/genética , Interferon gama/imunologia , Pulmão/microbiologia , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Linfócitos T/imunologia , Distribuição Tecidual , Tuberculose Pulmonar/imunologia , Tuberculose Pulmonar/microbiologia , Tuberculose Pulmonar/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA