Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Neuromuscul Disord ; 33(12): 983-987, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38016875

RESUMO

Welander distal myopathy typically manifests in late adulthood and is caused by the founder TIA1 c.1150G>A (p.Glu384Lys) variant in families of Swedish and Finnish descent. Recently, a similar phenotype has been attributed to the digenic inheritance of TIA1 c.1070A>G (p.Asn357Ser) and SQSTM1 c.1175C>T (p.Pro392Leu) variants. We describe two unrelated Spanish patients presenting with slowly progressive gait disturbance, distal-predominant weakness, and mildly elevated creatine kinase (CK) levels since their 6th decade. Electromyography revealed abnormal spontaneous activity and a myopathic pattern. Muscle magnetic resonance imaging (MRI) showed marked fatty replacement in distal leg muscles. A muscle biopsy, performed on one patient, revealed myopathic changes with rimmed vacuoles. Both patients carried the TIA1 p.Asn357Ser and SQSTM1 p.Pro392Leu variants. Digenic inheritance is supported by evidence from unrelated pedigrees and a plausible biological interaction between both proteins in protein quality control processes. Recent functional studies and additional case descriptions further support this. Clinical suspicion is necessary to seek both variants.


Assuntos
Miopatias Distais , Doenças Musculares , Adulto , Humanos , Miopatias Distais/patologia , Eletromiografia , Músculo Esquelético/patologia , Doenças Musculares/genética , Proteína Sequestossoma-1/genética , Antígeno-1 Intracelular de Células T/genética
2.
Neuromuscul Disord ; 33(4): 319-323, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36893608

RESUMO

Nemaline myopathy (NEM) type 10, caused by biallelic mutations in LMOD3, is a severe congenital myopathy clinically characterized by generalized hypotonia and muscle weakness, respiratory insufficiency, joint contractures, and bulbar weakness. Here, we describe a family with two adult patients presenting mild nemaline myopathy due to a novel homozygous missense variant in LMOD3. Both patients presented mild delayed motor milestones, frequent falls during infancy, prominent facial weakness and mild muscle weakness in the four limbs. Muscle biopsy showed mild myopathic changes and small nemaline bodies in a few fibers. A neuromuscular gene panel revealed a homozygous missense variant in LMOD3 that co-segregated with the disease in the family (NM_198271.4: c.1030C>T; p.Arg344Trp). The patients described here provide evidence of the phenotype-genotype correlation, suggesting that non-truncating variants in LMOD3 lead to milder phenotypes of NEM type 10.


Assuntos
Miopatias da Nemalina , Humanos , Miopatias da Nemalina/genética , Miopatias da Nemalina/patologia , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/patologia , Mutação de Sentido Incorreto , Debilidade Muscular/genética , Debilidade Muscular/patologia , Fenótipo , Mutação
3.
J Med Genet ; 60(6): 615-619, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36535754

RESUMO

BACKGROUND: Up to 7% of patients with Duchenne muscular dystrophy (DMD) or Becker muscular dystrophy (BMD) remain genetically undiagnosed after routine genetic testing. These patients are thought to carry deep intronic variants, structural variants or splicing alterations not detected through multiplex ligation-dependent probe amplification or exome sequencing. METHODS: RNA was extracted from seven muscle biopsy samples of patients with genetically undiagnosed DMD/BMD after routine genetic diagnosis. RT-PCR of the DMD gene was performed to detect the presence of alternative transcripts. Droplet digital PCR and whole-genome sequencing were also performed in some patients. RESULTS: We identified an alteration in the mRNA level in all the patients. We detected three pseudoexons in DMD caused by deep intronic variants, two of them not previously reported. We also identified a chromosomal rearrangement between Xp21.2 and 8p22. Furthermore, we detected three exon skipping events with unclear pathogenicity. CONCLUSION: These findings indicate that mRNA analysis of the DMD gene is a valuable tool to reach a precise genetic diagnosis in patients with a clinical and anatomopathological suspicion of dystrophinopathy that remain genetically undiagnosed after routine genetic testing.


Assuntos
Distrofia Muscular de Duchenne , Humanos , Distrofia Muscular de Duchenne/diagnóstico , Distrofia Muscular de Duchenne/genética , Distrofina/genética , RNA Mensageiro/genética , Mutação , Reação em Cadeia da Polimerase Multiplex
4.
Eur J Neurol ; 29(5): 1488-1495, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35112761

RESUMO

BACKGROUND: Oculopharyngeal muscular dystrophy (OPMD) is an autosomal dominant, late-onset myopathy characterized by ptosis, dysphagia, and progressive proximal limb muscle weakness. The disease is produced by a short expansion of the (GCN)n triplet in the PABPN1 gene. The size of expansion has been correlated to the disease onset and severity. We report the clinical features of a large cohort of OPMD patients harboring the (GCN)15 allele from the Canary Islands. METHODS: A retrospective observational study was performed analyzing the clinical, demographic, and genetic data of 123 OPMD patients. Clinical data from this cohort were compared with clinical data collected in a large European study including 139 OPMD patients. RESULTS: A total of 113 patients (94.2%) carried the (GCN)15 expanded PABN1 allele. Age of symptoms' onset was 45.1 years. The most frequent symptom at onset was ptosis (85.2%) followed by dysphagia (12%). The severity of the disease was milder in the Canary cohort compared to European patients as limb weakness (35.1% vs. 50.4%), the proportion of patients that require assistance for walking or use a wheelchair (9.3% vs. 27.4%), and needed of surgery because of severe dysphagia (4.6% vs. 22.8%) was higher in the European cohort. CONCLUSIONS: Nearly 95% of patients with OPMD from the Canary Islands harbored the (GCN)15 expanded allele supporting a potential founder effect. Disease progression seemed to be milder in the (GCN)15 OPMD Canary cohort than in other cohorts with shorter expansions suggesting that other factors, apart from the expansion size, could be involved in the progression of the disease.


Assuntos
Transtornos de Deglutição , Distrofia Muscular Oculofaríngea , Estudos de Coortes , Transtornos de Deglutição/genética , Humanos , Pessoa de Meia-Idade , Debilidade Muscular/etiologia , Distrofia Muscular Oculofaríngea/diagnóstico , Distrofia Muscular Oculofaríngea/genética , Proteína I de Ligação a Poli(A)/genética , Espanha
5.
Brain ; 145(2): 596-606, 2022 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-34515763

RESUMO

Sarcoglycanopathies include four subtypes of autosomal recessive limb-girdle muscular dystrophies (LGMDR3, LGMDR4, LGMDR5 and LGMDR6) that are caused, respectively, by mutations in the SGCA, SGCB, SGCG and SGCD genes. Delta-sarcoglycanopathy (LGMDR6) is the least frequent and is considered an ultra-rare disease. Our aim was to characterize the clinical and genetic spectrum of a large international cohort of LGMDR6 patients and to investigate whether or not genetic or protein expression data could predict a disease's severity. This is a retrospective study collecting demographic, genetic, clinical and histological data of patients with genetically confirmed LGMDR6 including protein expression data from muscle biopsies. We contacted 128 paediatric and adult neuromuscular units around the world that reviewed genetic data of patients with a clinical diagnosis of a neuromuscular disorder. We identified 30 patients with a confirmed diagnosis of LGMDR6 of which 23 patients were included in this study. Eighty-seven per cent of the patients had consanguineous parents. Ninety-one per cent of the patients were symptomatic at the time of the analysis. Proximal muscle weakness of the upper and lower limbs was the most common presenting symptom. Distal muscle weakness was observed early over the course of the disease in 56.5% of the patients. Cardiac involvement was reported in five patients (21.7%) and four patients (17.4%) required non-invasive ventilation. Sixty per cent of patients were wheelchair-bound since early teens (median age of 12.0 years). Patients with absent expression of the sarcoglycan complex on muscle biopsy had a significant earlier onset of symptoms and an earlier age of loss of ambulation compared to patients with residual protein expression. This study confirmed that delta-sarcoglycanopathy is an ultra-rare neuromuscular condition and described the clinical and molecular characteristics of the largest yet-reported collected cohort of patients. Our results showed that this is a very severe and quickly progressive disease characterized by generalized muscle weakness affecting predominantly proximal and distal muscles of the limbs. Similar to other forms of sarcoglycanopathies, the severity and rate of progressive weakness correlates inversely with the abundance of protein on muscle biopsy.


Assuntos
Distrofia Muscular do Cíngulo dos Membros , Distrofias Musculares , Sarcoglicanopatias , Adulto , Criança , Humanos , Debilidade Muscular , Distrofias Musculares/genética , Distrofia Muscular do Cíngulo dos Membros/diagnóstico , Distrofia Muscular do Cíngulo dos Membros/genética , Estudos Retrospectivos , Sarcoglicanopatias/genética , Sarcoglicanas/genética , Sarcoglicanas/metabolismo
6.
Pediatr Neurol ; 115: 50-65, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33333461

RESUMO

BACKGROUND: Congenital myopathies (CMs) are a clinically and genetically heterogeneous group of hereditary muscular disorders. The distribution of genetic and histologic subtypes has been addressed in only a few cohorts, and the relationship between phenotypes and genotypes is only partially understood. METHODS: This is a retrospective cross-sectional data collection study conducted at a single center. The clinical, histopathological, and molecular characterization of 104 patients with CM is reported. RESULTS: The most common histopathological subtype was core myopathy (42%). Patients with severe endomysial fibrosis were more commonly unable to walk than patients with only a mild-grade endomysial fibrosis (56% vs 16%). Inability to walk was also more prevalent in patients with severe fatty replacement (44% vs 19%). The genetic etiology was more frequently identified among those patients with "specific" histologic findings (74% vs 62%). A definite molecular diagnosis was reached in 65 of 104 patients (62%), with RYR1 (24/104) and TTN (8/104) being the most frequent causative genes. Neonatal onset occurred in 56%. Independent ambulation was achieved by 74%. Patients who walked late were more likely to become wheelchair-dependent. Respiratory support was needed in one of three patients. Gastrostomy placement was required in 15%. Cardiac involvement was observed in 3%, scoliosis in 43%, and intellectual disability in 6%. CONCLUSIONS: This study provides an updated picture of the clinical, histopathological, and molecular landscape of CMs. Independently of the causative gene, fibrosis and fatty replacement in muscle biopsy specimens are associated with clinical severity. Mutations in TTN are responsible for a higher proportion of cases than previously thought.


Assuntos
Músculo Esquelético/patologia , Miopatias Congênitas Estruturais/genética , Miopatias Congênitas Estruturais/patologia , Miopatias Congênitas Estruturais/fisiopatologia , Adolescente , Adulto , Idade de Início , Criança , Pré-Escolar , Estudos Transversais , Feminino , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Masculino , Músculo Esquelético/metabolismo , Fenótipo , Estudos Retrospectivos , Adulto Jovem
7.
Cancers (Basel) ; 12(8)2020 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-32796636

RESUMO

BACKGROUND: About 40% of RAS/BRAF wild-type metastatic colorectal cancer (mCRC) patients undergoing anti-EGFR-based therapy have poor outcomes. Treatment failure is not only associated with poorer prognosis but higher healthcare costs. Our aim was to identify novel somatic genetic variants in the primary tumor and assess their effect on anti-EGFR response. PATIENTS AND METHODS: Tumor (somatic) and blood (germline) DNA samples were obtained from two well-defined cohorts of mCRC patients, those sensitive and those resistant to EGFR blockade. Genetic variant screening of 43 EGFR-related genes was performed using targeted next-generation sequencing (NGS). Relevant clinical data were collected through chart review to assess genetic results. RESULTS: Among 61 patients, 38 were sensitive and 23 were resistant to treatment. We identified eight somatic variants that predicted non-response. Three were located in insulin-related genes (I668N and E1218K in IGF1R, T1156M in IRS2) and three in genes belonging to the LRIG family (T152T in LRIG1, S697L in LRIG2 and V812M in LRIG3). The remaining two variants were found in NRAS (G115Efs*46) and PDGFRA (T301T). We did not identify any somatic variants related to good response. CONCLUSIONS: This study provides evidence that novel somatic genetic variants along the EGFR-triggered pathway could modulate the response to anti-EGFR drugs in mCRC patients. It also highlights the influence of insulin-related genes and LRIG genes on anti-EGFR efficacy. Our findings could help characterize patients who are resistant to anti-EGFR blockade despite harboring RAS/BRAF wild-type tumors.

8.
Epilepsia ; 61(5): 971-983, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32266982

RESUMO

OBJECTIVE: To delineate the epileptic phenotype of LAMA2-related muscular dystrophy (MD) and correlate it with the neuroradiological and muscle biopsy findings, as well as the functional motor phenotype. METHODS: Clinical, electrophysiological, neuroradiological, and histopathological data of 25 patients with diagnosis of LAMA2-related MD were analyzed. RESULTS: Epilepsy occurred in 36% of patients with LAMA2-related MD. Mean age at first seizure was 8 years. The most common presenting seizure type was focal-onset seizures with or without impaired awareness. Visual aura and autonomic signs, including vomiting, were frequently reported. Despite a certain degree of variability, bilateral occipital or temporo-occipital epileptiform abnormalities were by far the most commonly observed. Refractory epilepsy was found in 75% of these patients. Epilepsy in LAMA2-related MD was significantly more prevalent in those patients in whom the cortical malformations were more extensive. In contrast, the occurrence of epilepsy was not found to be associated with the patients' motor ability, the size of their white matter abnormalities, or the amount of residual merosin expressed on muscle. SIGNIFICANCE: The epileptic phenotype of LAMA2-related MD is characterized by focal seizures with prominent visual and autonomic features associated with EEG abnormalities that predominate in the posterior quadrants. A consistent correlation between epileptic phenotype and neuroimaging was identified, suggesting that the extension of the polymicrogyria may serve as a predictor of epilepsy occurrence.


Assuntos
Distrofias Musculares/congênito , Adolescente , Idade de Início , Anticonvulsivantes/uso terapêutico , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Encéfalo/fisiopatologia , Criança , Pré-Escolar , Eletroencefalografia , Eletromiografia , Feminino , Humanos , Lactente , Imageamento por Ressonância Magnética , Masculino , Distrofias Musculares/diagnóstico por imagem , Distrofias Musculares/tratamento farmacológico , Distrofias Musculares/fisiopatologia , Neuroimagem , Fenótipo , Adulto Jovem
9.
J Med Genet ; 57(4): 258-268, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31586946

RESUMO

PURPOSE: Patients with Fanconi anaemia (FA), a rare DNA repair genetic disease, exhibit chromosome fragility, bone marrow failure, malformations and cancer susceptibility. FA molecular diagnosis is challenging since FA is caused by point mutations and large deletions in 22 genes following three heritability patterns. To optimise FA patients' characterisation, we developed a simplified but effective methodology based on whole exome sequencing (WES) and functional studies. METHODS: 68 patients with FA were analysed by commercial WES services. Copy number variations were evaluated by sequencing data analysis with RStudio. To test FANCA missense variants, wt FANCA cDNA was cloned and variants were introduced by site-directed mutagenesis. Vectors were then tested for their ability to complement DNA repair defects of a FANCA-KO human cell line generated by TALEN technologies. RESULTS: We identified 93.3% of mutated alleles including large deletions. We determined the pathogenicity of three FANCA missense variants and demonstrated that two FANCA variants reported in mutations databases as 'affecting functions' are SNPs. Deep analysis of sequencing data revealed patients' true mutations, highlighting the importance of functional analysis. In one patient, no pathogenic variant could be identified in any of the 22 known FA genes, and in seven patients, only one deleterious variant could be identified (three patients each with FANCA and FANCD2 and one patient with FANCE mutations) CONCLUSION: WES and proper bioinformatics analysis are sufficient to effectively characterise patients with FA regardless of the rarity of their complementation group, type of mutations, mosaic condition and DNA source.


Assuntos
Sequenciamento do Exoma , Proteína do Grupo de Complementação A da Anemia de Fanconi/genética , Anemia de Fanconi/genética , Predisposição Genética para Doença , Linhagem Celular , Variações do Número de Cópias de DNA/genética , Reparo do DNA/genética , Proteínas de Ligação a DNA/genética , Anemia de Fanconi/patologia , Feminino , Técnicas de Inativação de Genes , Humanos , Masculino , Mutação de Sentido Incorreto/genética , Polimorfismo de Nucleotídeo Único/genética
10.
Neuromuscul Disord ; 28(8): 633-638, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30007747

RESUMO

Mutations in the SGCA gene cause limb girdle muscular dystrophy type 2D (LGMD2D). We report a family with three affected siblings with a mild phenotype consisting of late onset glutei and axial muscle weakness produced by a new mutation in the SGCA gene leading to a partial expression of the alpha-sarcoglycan protein. The MRI showed muscle atrophy involving paraspinal, pelvic and thigh muscles and a dystrophic pattern was observed in the muscle biopsy. Exome sequencing revealed a homozygous intronic deletion of SGCA and mRNA analysis showed the presence of three different transcripts. The presence, though in a lower proportion, of wild type transcript leads to a milder presentation of the disease. Although clinical symptoms did not entirely correspond with a sarcoglycanopathy, a compatible muscle MRI drove us to look for changes in the sarcoglycan genes. These cases are an example of how clinical, radiological and pathological data enriches the interpretation of exome analysis.


Assuntos
Mutação , Fenótipo , Sarcoglicanopatias/genética , Sarcoglicanas/genética , Adulto , Idade de Início , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Sarcoglicanopatias/diagnóstico , Índice de Gravidade de Doença , Irmãos
11.
Orphanet J Rare Dis ; 7: 82, 2012 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-23092449

RESUMO

BACKGROUND: Between 8% and 22% of female carriers of DMD mutations exhibit clinical symptoms of variable severity. Development of symptoms in DMD mutation carriers without chromosomal rearrangements has been attributed to skewed X-chromosome inactivation (XCI) favouring predominant expression of the DMD mutant allele. However the prognostic use of XCI analysis is controversial. We aimed to evaluate the correlation between X-chromosome inactivation and development of clinical symptoms in a series of symptomatic female carriers of dystrophinopathy. METHODS: We reviewed the clinical, pathological and genetic features of twenty-four symptomatic carriers covering a wide spectrum of clinical phenotypes. DMD gene analysis was performed using MLPA and whole gene sequencing in blood DNA and muscle cDNA. Blood and muscle DNA was used for X-chromosome inactivation (XCI) analysis thought the AR methylation assay in symptomatic carriers and their female relatives, asymptomatic carriers as well as non-carrier females. RESULTS: Symptomatic carriers exhibited 49.2% more skewed XCI profiles than asymptomatic carriers. The extent of XCI skewing in blood tended to increase in line with the severity of muscle symptoms. Skewed XCI patterns were found in at least one first-degree female relative in 78.6% of symptomatic carrier families. No mutations altering XCI in the XIST gene promoter were found. CONCLUSIONS: Skewed XCI is in many cases familial inherited. The extent of XCI skewing is related to phenotype severity. However, the assessment of XCI by means of the AR methylation assay has a poor prognostic value, probably because the methylation status of the AR gene in muscle may not reflect in all cases the methylation status of the DMD gene.


Assuntos
Distrofina/genética , Triagem de Portadores Genéticos , Distrofias Musculares/genética , Inativação do Cromossomo X , Adolescente , Adulto , Idoso , Biópsia , Criança , Pré-Escolar , Feminino , Humanos , Músculo Esquelético/patologia , Distrofias Musculares/patologia , Mutação , Prognóstico , Regiões Promotoras Genéticas , Adulto Jovem
12.
PLoS One ; 6(12): e29061, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22194990

RESUMO

BACKGROUND: Dysferlinopathies are caused by mutations in the dysferlin gene (DYSF). Diagnosis is complex due to the high clinical variability of the disease and because dysferlin expression in the muscle biopsy may be secondarily reduced due to a primary defect in some other gene. Dysferlin is also expressed in peripheral blood monocytes (PBM). Studying dysferlin in monocytes is used for the diagnosis of dysferlin myopathies. The aim of the study was to determine whether dysferlin expression in PBM correlates with that in skeletal muscle. METHODOLOGY/PRINCIPAL FINDINGS: Using western-blot (WB) we quantified dysferlin expression in PBM from 21 pathological controls with other myopathies in whom mutations in DYSF were excluded and from 17 patients who had dysferlinopathy and two mutations in DYSF. Results were compared with protein expression in muscle by WB and immunohistochemistry (IH). We found a good correlation between skeletal muscle and monocytes using WB. However, IH results were misleading because abnormal expression of dysferlin was also observed in 13/21 pathological controls. CONCLUSIONS/SIGNIFICANCE: The analysis of dysferlin protein expression in PBM is helpful when: 1) the skeletal muscle IH pattern is abnormal or 2) when muscle WB can not be performed either because muscle sample is lacking or insufficient or because the muscle biopsy is taken from a muscle at an end-stage and it mainly consists of fat and fibrotic tissue.


Assuntos
Proteínas de Membrana/metabolismo , Monócitos/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Distrofia Muscular do Cíngulo dos Membros/diagnóstico , Distrofia Muscular do Cíngulo dos Membros/metabolismo , Adulto , Biópsia , Análise Mutacional de DNA , Disferlina , Feminino , Humanos , Receptores de Lipopolissacarídeos/metabolismo , Masculino , Proteínas de Membrana/genética , Proteínas Musculares/genética , Distrofia Muscular do Cíngulo dos Membros/patologia , Mutação/genética , Solubilidade
13.
J Neurol Sci ; 276(1-2): 95-8, 2009 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-18930476

RESUMO

UNLABELLED: We report a Spanish family affected from a late onset, hand-involved and autosomal dominant distal myopathy associated to Caveolin-3 mutation. Signs of muscle hyperexcitability and hyperckemia were observed in the youngest relatives but not motor symptoms. PATIENTS AND METHODS: Neurological examination was performed in all members of the family. Muscle biopsy sample was taken from the proband and DNA genomics was amplified for the two exons of Cav-3 by the polymerase chain reaction (PCR) in all the affected members and in three asymptomatic relatives. RESULTS: Signs of muscle hyperexcitability and hyperckemia were observed in the affected members from early ages. Cav-3 expression was greatly reduced in the sarcolemma of the proband's muscle. Genetic studies revealed a G --> A transition at nucleotide position 80 in exon 1 of the Cav-3 gene (c.80G>A), generating a Arg --> Gln change at codon 27 (p.R27Q) of the amino acid chain in heterozygous state, while no mutation was found in unaffected members. CONCLUSIONS: Signs of muscle hyperexcitability and hyperckemia at early ages may predict the development of a late onset autosomal dominant hand-involved myopathy associated to Cav-3 mutation in the family reported herein.


Assuntos
Caveolina 3/genética , Miopatias Distais/genética , Saúde da Família , Mutação/genética , Fenótipo , Idoso , Arginina/genética , Caveolina 3/metabolismo , Análise Mutacional de DNA/métodos , Miopatias Distais/patologia , Miopatias Distais/fisiopatologia , Éxons/genética , Glicina/genética , Humanos , Masculino , Músculo Esquelético/patologia , Músculo Esquelético/ultraestrutura , Exame Neurológico/métodos , Espanha
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA