Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Med Virol ; 94(4): 1606-1616, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34877674

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic has sparked the rapid development of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) diagnostics. However, emerging variants pose the risk for target dropout and false-negative results secondary to primer/probe binding site (PBS) mismatches. The Agena MassARRAY® SARS-CoV-2 Panel combines reverse-transcription polymerase chain reaction and matrix-assisted laser desorption/ionization time-of-flight mass-spectrometry to probe for five targets across N and ORF1ab genes, which provides a robust platform to accommodate PBS mismatches in divergent viruses. Herein, we utilize a deidentified data set of 1262 SARS-CoV-2-positive specimens from Mount Sinai Health System (New York City) from December 2020 to April 2021 to evaluate target results and corresponding sequencing data. Overall, the level of PBS mismatches was greater in specimens with target dropout. Of specimens with N3 target dropout, 57% harbored an A28095T substitution that is highly specific for the Alpha (B.1.1.7) variant of concern. These data highlight the benefit of redundancy in target design and the potential for target performance to illuminate the dynamics of circulating SARS-CoV-2 variants.


Assuntos
Teste de Ácido Nucleico para COVID-19/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , SARS-CoV-2/isolamento & purificação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , COVID-19/epidemiologia , COVID-19/virologia , Proteínas do Nucleocapsídeo de Coronavírus/genética , Variação Genética , Genoma Viral/genética , Humanos , Cidade de Nova Iorque/epidemiologia , Fosfoproteínas/genética , Poliproteínas/genética , RNA Viral/genética , SARS-CoV-2/genética , Proteínas Virais/genética
2.
Sci Rep ; 11(1): 13308, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-34172783

RESUMO

Gastrointestinal symptoms are common in COVID-19 patients but the nature of the gut immune response to SARS-CoV-2 remains poorly characterized, partly due to the difficulty of obtaining biopsy specimens from infected individuals. In lieu of tissue samples, we measured cytokines, inflammatory markers, viral RNA, microbiome composition, and antibody responses in stool samples from a cohort of 44 hospitalized COVID-19 patients. SARS-CoV-2 RNA was detected in stool of 41% of patients and more frequently in patients with diarrhea. Patients who survived had lower fecal viral RNA than those who died. Strains isolated from stool and nasopharynx of an individual were the same. Compared to uninfected controls, COVID-19 patients had higher fecal levels of IL-8 and lower levels of fecal IL-10. Stool IL-23 was higher in patients with more severe COVID-19 disease, and we found evidence of intestinal virus-specific IgA responses associated with more severe disease. We provide evidence for an ongoing humeral immune response to SARS-CoV-2 in the gastrointestinal tract, but little evidence of overt inflammation.


Assuntos
COVID-19 , Fezes , Microbioma Gastrointestinal , Nasofaringe/virologia , RNA Viral/isolamento & purificação , Idoso , Biomarcadores/metabolismo , COVID-19/epidemiologia , COVID-19/imunologia , Estudos de Coortes , Citocinas/metabolismo , Fezes/virologia , Feminino , Humanos , Imunoglobulina A/sangue , Imunoglobulina A/imunologia , Masculino , Pessoa de Meia-Idade , Cidade de Nova Iorque/epidemiologia , SARS-CoV-2/isolamento & purificação
3.
Gastroenterology ; 160(7): 2435-2450.e34, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33676971

RESUMO

BACKGROUND & AIMS: Given that gastrointestinal (GI) symptoms are a prominent extrapulmonary manifestation of COVID-19, we investigated intestinal infection with SARS-CoV-2, its effect on pathogenesis, and clinical significance. METHODS: Human intestinal biopsy tissues were obtained from patients with COVID-19 (n = 19) and uninfected control individuals (n = 10) for microscopic examination, cytometry by time of flight analyses, and RNA sequencing. Additionally, disease severity and mortality were examined in patients with and without GI symptoms in 2 large, independent cohorts of hospitalized patients in the United States (N = 634) and Europe (N = 287) using multivariate logistic regressions. RESULTS: COVID-19 case patients and control individuals in the biopsy cohort were comparable for age, sex, rates of hospitalization, and relevant comorbid conditions. SARS-CoV-2 was detected in small intestinal epithelial cells by immunofluorescence staining or electron microscopy in 15 of 17 patients studied. High-dimensional analyses of GI tissues showed low levels of inflammation, including down-regulation of key inflammatory genes including IFNG, CXCL8, CXCL2, and IL1B and reduced frequencies of proinflammatory dendritic cells compared with control individuals. Consistent with these findings, we found a significant reduction in disease severity and mortality in patients presenting with GI symptoms that was independent of sex, age, and comorbid illnesses and despite similar nasopharyngeal SARS-CoV-2 viral loads. Furthermore, there was reduced levels of key inflammatory proteins in circulation in patients with GI symptoms. CONCLUSIONS: These data highlight the absence of a proinflammatory response in the GI tract despite detection of SARS-CoV-2. In parallel, reduced mortality in patients with COVID-19 presenting with GI symptoms was observed. A potential role of the GI tract in attenuating SARS-CoV-2-associated inflammation needs to be further examined.


Assuntos
COVID-19/virologia , Gastroenteropatias/virologia , Imunidade nas Mucosas , Mucosa Intestinal/virologia , SARS-CoV-2/patogenicidade , Idoso , Idoso de 80 Anos ou mais , COVID-19/diagnóstico , COVID-19/imunologia , COVID-19/mortalidade , Estudos de Casos e Controles , Células Cultivadas , Citocinas/sangue , Feminino , Gastroenteropatias/diagnóstico , Gastroenteropatias/imunologia , Gastroenteropatias/mortalidade , Interações Hospedeiro-Patógeno , Humanos , Mediadores da Inflamação/sangue , Mucosa Intestinal/imunologia , Itália , Masculino , Pessoa de Meia-Idade , Cidade de Nova Iorque , Prognóstico , Medição de Risco , Fatores de Risco , SARS-CoV-2/imunologia , Carga Viral
5.
J Virol ; 93(6)2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30567980

RESUMO

Influenza A viruses (IAVs) remain a significant public health threat, causing more than 300,000 hospitalizations in the United States during the 2015-2016 season alone. While only a few IAVs of avian origin have been associated with human infections, the ability of these viruses to cause zoonotic infections further increases the public health risk of influenza. Of these, H9N2 viruses in Asia are of particular importance as they have contributed internal gene segments to other emerging zoonotic IAVs. Notably, recent H9N2 viruses have acquired molecular markers that allow for a transition from avian-like to human-like terminal sialic acid (SA) receptor recognition via a single amino acid change at position 226 (H3 numbering), from glutamine (Q226) to leucine (L226), within the hemagglutinin (HA) receptor-binding site (RBS). We sought to determine the plasticity of amino acid 226 and the biological effects of alternative amino acids on variant viruses. We created a library of viruses with the potential of having any of the 20 amino acids at position 226 on a prototypic H9 HA subtype IAV. We isolated H9 viruses that carried naturally occurring amino acids, variants found in other subtypes, and variants not found in any subtype at position 226. Fitness studies in quails revealed that some natural amino acids conferred an in vivo replication advantage. This study shows the flexibility of position 226 of the HA of H9 influenza viruses and the resulting effect of single amino acid changes on the phenotype of variants in vivo and in vitroIMPORTANCE A single amino acid change at position 226 in the hemagglutinin (HA) from glutamine (Q) to leucine (L) has been shown to play a key role in receptor specificity switching in various influenza virus HA subtypes, including H9. We tested the flexibility of amino acid usage and determined the effects of such changes. The results reveal that amino acids other than L226 and Q226 are well tolerated and that some amino acids allow for the recognition of both avian and human influenza virus receptors in the absence of other changes. Our results can inform better avian influenza virus surveillance efforts as well as contribute to rational vaccine design and improve structural molecular dynamics algorithms.


Assuntos
Aminoácidos/genética , Sítios de Ligação/genética , Vírus da Influenza A Subtipo H9N2/genética , Tropismo/fisiologia , Replicação Viral/genética , Substituição de Aminoácidos/genética , Animais , Linhagem Celular , Linhagem Celular Tumoral , Galinhas , Cães , Células HEK293 , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Humanos , Vacinas contra Influenza/genética , Influenza Aviária/virologia , Influenza Humana/virologia , Células Madin Darby de Rim Canino , Ligação Proteica/genética , Codorniz/virologia , Receptores de Superfície Celular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA