Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Viruses ; 16(6)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38932278

RESUMO

The envelope glycoprotein (Env) of retroviruses, such as the Feline leukemia virus (FeLV), is the main target of neutralizing humoral response, and therefore, a promising vaccine candidate, despite its reported poor immunogenicity. The incorporation of mutations that stabilize analogous proteins from other viruses in their prefusion conformation (e.g., HIV Env, SARS-CoV-2 S, or RSV F glycoproteins) has improved their capability to induce neutralizing protective immune responses. Therefore, we have stabilized the FeLV Env protein following a strategy based on the incorporation of a disulfide bond and an Ile/Pro mutation (SOSIP) previously used to generate soluble HIV Env trimers. We have characterized this SOSIP-FeLV Env in its soluble form and as a transmembrane protein present at high density on the surface of FeLV Gag-based VLPs. Furthermore, we have tested its immunogenicity in DNA-immunization assays in C57BL/6 mice. Low anti-FeLV Env responses were detected in SOSIP-FeLV soluble protein-immunized animals; however, unexpectedly no responses were detected in the animals immunized with SOSIP-FeLV Gag-based VLPs. In contrast, high humoral response against FeLV Gag was observed in the animals immunized with control Gag VLPs lacking SOSIP-FeLV Env, while this response was significantly impaired when the VLPs incorporated SOSIP-FeLV Env. Our data suggest that FeLV Env can be stabilized as a soluble protein and can be expressed in high-density VLPs. However, when formulated as a DNA vaccine, SOSIP-FeLV Env remains poorly immunogenic, a limitation that must be overcome to develop an effective FeLV vaccine.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Vírus da Leucemia Felina , Camundongos Endogâmicos C57BL , Proteínas do Envelope Viral , Animais , Camundongos , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/sangue , Proteínas do Envelope Viral/imunologia , Proteínas do Envelope Viral/genética , Vírus da Leucemia Felina/imunologia , Vírus da Leucemia Felina/genética , Produtos do Gene gag/imunologia , Produtos do Gene gag/genética , Feminino , Vacinas de Partículas Semelhantes a Vírus/imunologia , Vacinas de Partículas Semelhantes a Vírus/genética , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem , Humanos , Gatos , Vacinas Virais/imunologia , Vacinas Virais/genética , Vacinas Virais/administração & dosagem , Imunogenicidade da Vacina
2.
Int J Mol Sci ; 24(10)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37240371

RESUMO

Feline leukemia virus (FeLV) is one of the most prevalent infectious diseases in domestic cats. Although different commercial vaccines are available, none of them provides full protection. Thus, efforts to design a more efficient vaccine are needed. Our group has successfully engineered HIV-1 Gag-based VLPs that induce a potent and functional immune response against the HIV-1 transmembrane protein gp41. Here, we propose to use this concept to generate FeLV-Gag-based VLPs as a novel vaccine strategy against this retrovirus. By analogy to our HIV-1 platform, a fragment of the FeLV transmembrane p15E protein was exposed on FeLV-Gag-based VLPs. After optimization of Gag sequences, the immunogenicity of the selected candidates was evaluated in C57BL/6 and BALB/c mice, showing strong cellular and humoral responses to Gag but failing to generate anti-p15E antibodies. Altogether, this study not only tests the versatility of the enveloped VLP-based vaccine platform but also sheds light on FeLV vaccine research.


Assuntos
HIV-1 , Vacinas de Partículas Semelhantes a Vírus , Camundongos , Animais , Gatos , Vírus da Leucemia Felina , Camundongos Endogâmicos C57BL , Retroviridae , Proteína gp41 do Envelope de HIV
3.
Eur Heart J Cardiovasc Imaging ; 18(7): 732-741, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28329054

RESUMO

BACKGROUND: While individual cardiac myocytes only have a limited ability to shorten, the heart efficiently pumps a large volume-fraction thanks to a cell organization in a complex 3D fibre structure. Subclinical subtle cardiac structural remodelling is often present before symptoms arise. Understanding and early detection of these subtle changes is crucial for diagnosis and prevention. Additionally, personalized computational modelling requires knowledge on the multi-scale structure of the whole heart and vessels. METHODS AND RESULTS: We developed a rapid acquisition together with visualization and quantification methods of the integrated microstructure of whole in-vitro rodents hearts using synchrotron based X-ray phase-contrast tomography. These images are formed not only by X-ray absorption by the tissue but also by wave propagation phenomena, enhancing structural information, thus allowing to raise tissue contrast to an unprecedented level. We used a (ex-vivo) normal rat heart and fetal rabbit hearts suffering intrauterine growth restriction as a model of subclinical cardiac remodelling to illustrate the strengths and potential of the technique. For comparison, histology and diffusion tensor magnetic resonance imaging was performed. CONCLUSIONS: We have developed a novel, high resolution, image acquisition, and quantification approach to study a whole in-vitro heart at myofibre resolution, providing integrated 3D structural information at microscopic level without any need of tissue slicing and processing. This superior imaging approach opens up new possibilities for a systems approach towards analysing cardiac structure and function, providing rapid acquisition of quantitative microstructure of the heart in a near native state.


Assuntos
Sistema Cardiovascular/anatomia & histologia , Imagem de Difusão por Ressonância Magnética/métodos , Miócitos Cardíacos/ultraestrutura , Síncrotrons , Microtomografia por Raio-X/métodos , Animais , Simulação por Computador , Imageamento Tridimensional , Modelos Animais , Coelhos , Ratos , Ratos Sprague-Dawley , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA