Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Psychiatr Genet ; 33(6): 213-232, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37851134

RESUMO

Chromatin, a protein-DNA complex, is a dynamic structure that stores genetic information within the nucleus and responds to molecular/cellular changes in its structure, providing conditional access to the genetic machinery. ATP-dependent chromatin modifiers regulate access of transcription factors and RNA polymerases to DNA by either "opening" or "closing" the structure of chromatin, and its aberrant regulation leads to a variety of neurodevelopmental disorders. The chromodomain helicase DNA-binding (CHD) proteins are ATP-dependent chromatin modifiers involved in the organization of chromatin structure, act as gatekeepers of genomic access, and deposit histone variants required for gene regulation. In this review, we first discuss the structural and functional domains of the CHD proteins, and their binding sites, and phosphorylation, acetylation, and methylation sites. The conservation of important amino acids in SWItch/sucrose non-fermenting (SWI/SNF) domains, and their protein and mRNA tissue expression profiles are discussed. Next, we convey the important binding partners of CHD proteins, their protein complexes and activities, and their involvements in epigenetic regulation. We also show the ChIP-seq binding dynamics for CHD1, CHD2, CHD4, and CHD7 proteins at promoter regions of histone genes, as well as several genes that are critical for neurodevelopment. The role of CHD proteins in development is also discussed. Finally, this review provides information about CHD protein mutations reported in autism and neurodevelopmental disorders, and their pathogenicity. Overall, this review provides information on the progress of research into CHD proteins, their structural and functional domains, epigenetics, and their role in stem cell, development, and neurological disorders.


Assuntos
Transtorno Autístico , Doenças do Sistema Nervoso , Humanos , Cromatina/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Histonas/genética , Histonas/metabolismo , Epigênese Genética , Transtorno Autístico/genética , Montagem e Desmontagem da Cromatina/genética , DNA , DNA Helicases/genética , DNA Helicases/química , DNA Helicases/metabolismo , Trifosfato de Adenosina/metabolismo , Doenças do Sistema Nervoso/genética
2.
Antioxidants (Basel) ; 8(7)2019 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-31336755

RESUMO

Plant polyphenols, with broadly known antioxidant properties, represent very effective agents against environmental oxidative stressors, including mercury. This heavy metal irreversibly binds thiol groups, sequestering endogenous antioxidants, such as glutathione. Increased incidence of food-derived mercury is cause for concern, given the many severe downstream effects, ranging from kidney to cardiovascular diseases. Therefore, the possible beneficial properties of Feijoa sellowiana against mercury toxicity were tested using intact human red blood cells (RBC) incubated in the presence of HgCl2. Here, we show that phenol-rich (10-200 µg/mL) extracts from the Feijoa sellowiana fruit potently protect against mercury-induced toxicity and oxidative stress. Peel and pulp extracts are both able to counteract the oxidative stress and thiol decrease induced in RBC by mercury treatment. Nonetheless, the peel extract had a greater protective effect compared to the pulp, although to a different extent for the different markers analyzed, which is at least partially due to the greater proportion and diversity of polyphenols in the peel. Furthermore, Fejioa sellowiana extracts also prevent mercury-induced morphological changes, which are known to enhance the pro-coagulant activity of these cells. These novel findings provide biochemical bases for the pharmacological use of Fejioa sellowiana-based functional foods in preventing and combating mercury-related illnesses.

3.
Acta Biochim Pol ; 65(2): 259-267, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29906296

RESUMO

Here we report the industrial pollution effects due to cadmium on the reproductive health of Mytilus galloprovincialis. Mussels were removed from the biofouling of a Conatex panel after one year exposition at a polluted site near a disposal metallurgical factory. A high cadmium bioaccumulation was observed in the testis of mussels housed at the polluted site, with respect to a control site, as determined by inductively coupled plasma-mass spectrometry, along with a 10 fold increase in metallothionein 20 kDa gene (mt20) expression levels determined by qPCR. Furthermore, mussels transferred into laboratory tanks from the reference site, and exposed to 1.5, 5 and 10 µM CdCl2, revealed a 1.7, 3.2 and 4.5 fold expression increase in the testis mt20, respectively, and a positive correlation with cadmium bioaccumulation was found. To evaluate a potential detrimental risk of such alterations on spermatozoa, we carried out electrophoretic analyses on their protamine-like proteins. As determined by AU-PAGE, after 1.5 µM CdCl2 exposure, protamine-like proteins also display major alterations with respect to those obtained after 5 and 10 µM CdCl2 exposure. All protamine-like proteins isolated from the polluted biofouling were in an aggregated form and displayed the same reduced DNA binding affinity of the protamine-like proteins obtained after 1.5 µM CdCl2 as demonstrated EMSA with sperm genomic DNA. Our results contribute to the studies concerning cadmium induced testis alterations and highlight protamine-like proteins' analysis as an emerging biotechnique for cadmium impact assessment on Mytilus galloprovincialis, for the sensitivity of the in vivo and in vitro changes of protamine-like proteins' state and their DNA binding affinity.


Assuntos
Cádmio/farmacologia , Protaminas/análise , Poluentes Químicos da Água/farmacologia , Animais , DNA/metabolismo , Masculino , Metalotioneína/metabolismo , Mytilus , Protaminas/metabolismo , Reprodução/efeitos dos fármacos , Testículo/efeitos dos fármacos , Poluentes Químicos da Água/análise
4.
Epigenetics ; 12(11): 934-944, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29099289

RESUMO

MeCP2 binds to methylated DNA in a chromatin context and has an important role in cancer and brain development and function. Histone deacetylase (HDAC) inhibitors are currently being used to palliate many cancer and neurological disorders. Yet, the molecular mechanisms involved are not well known for the most part and, in particular, the relationship between histone acetylation and MeCP2 is not well understood. In this paper, we study the effect of the HDAC inhibitor trichostatin A (TSA) on MeCP2, a protein whose dysregulation plays an important role in these diseases. We find that treatment of cells with TSA decreases the phosphorylation state of this protein and appears to result in a higher MeCP2 chromatin binding affinity. Yet, the binding dynamics with which the protein binds to DNA appear not to be significantly affected despite the chromatin reorganization resulting from the high levels of acetylation. HDAC inhibition also results in an overall decrease in MeCP2 levels of different cell lines. Moreover, we show that miR132 increases upon TSA treatment, and is one of the players involved in the observed downregulation of MeCP2.


Assuntos
Cromatina/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Proteína 2 de Ligação a Metil-CpG/genética , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Células 3T3 , Animais , Células HEK293 , Células HeLa , Humanos , Proteína 2 de Ligação a Metil-CpG/metabolismo , Camundongos , Fosforilação , Ligação Proteica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA