Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 999, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36890170

RESUMO

Dominant mutations in tyrosyl-tRNA synthetase (YARS1) and six other tRNA ligases cause Charcot-Marie-Tooth peripheral neuropathy (CMT). Loss of aminoacylation is not required for their pathogenicity, suggesting a gain-of-function disease mechanism. By an unbiased genetic screen in Drosophila, we link YARS1 dysfunction to actin cytoskeleton organization. Biochemical studies uncover yet unknown actin-bundling property of YARS1 to be enhanced by a CMT mutation, leading to actin disorganization in the Drosophila nervous system, human SH-SY5Y neuroblastoma cells, and patient-derived fibroblasts. Genetic modulation of F-actin organization improves hallmark electrophysiological and morphological features in neurons of flies expressing CMT-causing YARS1 mutations. Similar beneficial effects are observed in flies expressing a neuropathy-causing glycyl-tRNA synthetase. Hence, in this work, we show that YARS1 is an evolutionary-conserved F-actin organizer which links the actin cytoskeleton to tRNA-synthetase-induced neurodegeneration.


Assuntos
Actinas , Tirosina-tRNA Ligase , Animais , Humanos , Actinas/metabolismo , Doença de Charcot-Marie-Tooth/genética , Drosophila/genética , Glicina-tRNA Ligase/genética , Mutação , RNA de Transferência , Tirosina-tRNA Ligase/genética , Tirosina-tRNA Ligase/metabolismo , Linhagem Celular Tumoral
2.
Curr Biol ; 30(23): 4763-4772.e8, 2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-33007249

RESUMO

EB1 was discovered 25 years ago as a binding partner of the tumor suppressor adenomatous polyposis coli (APC) [1]; however, the significance of EB1-APC interactions has remained poorly understood. EB1 functions at the center of a network of microtubule end-tracking proteins (+TIPs) [2-5], and APC binding to EB1 promotes EB1 association with microtubule ends and microtubule stabilization [6, 7]. Whether EB1 interactions govern functions of APC beyond microtubule regulation has not been explored. The C-terminal basic domain of APC (APC-B) directly nucleates actin assembly, and this activity is required in vivo for directed cell migration and for maintaining normal levels of F-actin [8-10]. Here, we show that EB1 binds APC-B and inhibits its actin nucleation function by blocking actin monomer recruitment. Consistent with these biochemical observations, knocking down EB1 increases F-actin levels in cells, and this can be rescued by disrupting APC-mediated actin nucleation. Conversely, overexpressing EB1 decreases F-actin levels and impairs directed cell migration without altering microtubule organization and independent of its direct binding interactions with microtubules. Overall, our results define a new function for EB1 in negatively regulating APC-mediated actin assembly. Combining these findings with other recent studies showing that APC interactions regulate EB1-dependent effects on microtubule dynamics [7], we propose that EB1-APC interactions govern bidirectional cytoskeletal crosstalk by coordinating microtubule and actin dynamics.


Assuntos
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Proteína da Polipose Adenomatosa do Colo/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteína da Polipose Adenomatosa do Colo/genética , Linhagem Celular Tumoral , Movimento Celular , Adesões Focais/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Microscopia Intravital , Microtúbulos/metabolismo
3.
PLoS Biol ; 18(8): e3000774, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32745097

RESUMO

The Scar/WAVE complex is the principal catalyst of pseudopod and lamellipod formation. Here we show that Scar/WAVE's proline-rich domain is polyphosphorylated after the complex is activated. Blocking Scar/WAVE activation stops phosphorylation in both Dictyostelium and mammalian cells, implying that phosphorylation modulates pseudopods after they have been formed, rather than controlling whether they are initiated. Unexpectedly, phosphorylation is not promoted by chemotactic signaling but is greatly stimulated by cell:substrate adhesion and diminished when cells deadhere. Phosphorylation-deficient or phosphomimetic Scar/WAVE mutants are both normally functional and rescue the phenotype of knockout cells, demonstrating that phosphorylation is dispensable for activation and actin regulation. However, pseudopods and patches of phosphorylation-deficient Scar/WAVE last substantially longer in mutants, altering the dynamics and size of pseudopods and lamellipods and thus changing migration speed. Scar/WAVE phosphorylation does not require ERK2 in Dictyostelium or mammalian cells. However, the MAPKKK homologue SepA contributes substantially-sepA mutants have less steady-state phosphorylation, which does not increase in response to adhesion. The mutants also behave similarly to cells expressing phosphorylation-deficient Scar, with longer-lived pseudopods and patches of Scar recruitment. We conclude that pseudopod engagement with substratum is more important than extracellular signals at regulating Scar/WAVE's activity and that phosphorylation acts as a pseudopod timer by promoting Scar/WAVE turnover.


Assuntos
Dictyostelium/genética , MAP Quinase Quinase Quinase 3/genética , Proteínas de Protozoários/genética , Pseudópodes/metabolismo , Família de Proteínas da Síndrome de Wiskott-Aldrich/genética , Animais , Sistemas CRISPR-Cas , Adesão Celular , Linhagem Celular Tumoral , Quimiotaxia/genética , Dictyostelium/metabolismo , Dictyostelium/ultraestrutura , Edição de Genes/métodos , Regulação da Expressão Gênica , MAP Quinase Quinase Quinase 3/metabolismo , Melanócitos/metabolismo , Melanócitos/ultraestrutura , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Mutação , Células NIH 3T3 , Fenótipo , Fosforilação , Ploidias , Proteínas de Protozoários/metabolismo , Pseudópodes/genética , Pseudópodes/ultraestrutura , Família de Proteínas da Síndrome de Wiskott-Aldrich/metabolismo
4.
Mol Biol Cell ; 31(20): 2168-2178, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32697617

RESUMO

SCAR/WAVE proteins and Arp2/3 complex assemble branched actin networks at the leading edge. Two isoforms of SCAR/WAVE, WAVE1 and WAVE2, reside at the leading edge, yet it has remained unclear whether they perform similar or distinct roles. Further, there have been conflicting reports about the Arp2/3-independent biochemical activities of WAVE1 on actin filament elongation. To investigate this in vivo, we knocked out WAVE1 and WAVE2 genes, individually and together, in B16-F1 melanoma cells. We demonstrate that WAVE1 and WAVE2 are redundant for lamellipodia formation and motility. However, there is a significant decrease in the rate of leading edge actin extension in WAVE2 KO cells, and an increase in WAVE1 KO cells. The faster rates of actin extension in WAVE1 KO cells are offset by faster retrograde flow, and therefore do not translate into faster lamellipodium protrusion. Thus, WAVE1 restricts the rate of actin extension at the leading edge, and appears to couple actin networks to the membrane to drive protrusion. Overall, these results suggest that WAVE1 and WAVE2 have redundant roles in promoting Arp2/3-dependent actin nucleation and lamellipodia formation, but distinct roles in controlling actin network extension and harnessing network growth to cell protrusion.


Assuntos
Actinas/metabolismo , Família de Proteínas da Síndrome de Wiskott-Aldrich/metabolismo , Citoesqueleto de Actina/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Movimento Celular/fisiologia , Extensões da Superfície Celular/metabolismo , Humanos , Proteínas dos Microfilamentos/metabolismo , Pseudópodes/metabolismo , Família de Proteínas da Síndrome de Wiskott-Aldrich/genética
5.
J Cell Biol ; 218(10): 3415-3435, 2019 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-31471457

RESUMO

Focal adhesion (FA) turnover depends on microtubules and actin. Microtubule ends are captured at FAs, where they induce rapid FA disassembly. However, actin's roles are less clear. Here, we use polarization-resolved microscopy, FRAP, live cell imaging, and a mutant of Adenomatous polyposis coli (APC-m4) defective in actin nucleation to investigate the role of actin assembly in FA turnover. We show that APC-mediated actin assembly is critical for maintaining normal F-actin levels, organization, and dynamics at FAs, along with organization of FA components. In WT cells, microtubules are captured repeatedly at FAs as they mature, but once a FA reaches peak maturity, the next microtubule capture event leads to delivery of an autophagosome, triggering FA disassembly. In APC-m4 cells, microtubule capture frequency and duration are altered, and there are long delays between autophagosome delivery and FA disassembly. Thus, APC-mediated actin assembly is required for normal feedback between microtubules and FAs, and maintaining FAs in a state "primed" for microtubule-induced turnover.


Assuntos
Actinas/metabolismo , Proteína da Polipose Adenomatosa do Colo/metabolismo , Adesões Focais/metabolismo , Microtúbulos/metabolismo , Humanos , Células Tumorais Cultivadas
6.
Nat Commun ; 9(1): 1892, 2018 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-29760438

RESUMO

Actin polymerization powers key cellular processes, including motility, morphogenesis, and endocytosis. The actin turnover cycle depends critically on "re-charging" of ADP-actin monomers with ATP, but whether this reaction requires dedicated proteins in cells, and the underlying mechanism, have remained elusive. Here we report that nucleotide exchange catalyzed by the ubiquitous cytoskeletal regulator cyclase-associated protein (CAP) is critical for actin-based processes in vivo. We determine the structure of the CAP-actin complex, which reveals that nucleotide exchange occurs in a compact, sandwich-like complex formed between the dimeric actin-binding domain of CAP and two ADP-actin monomers. In the crystal structure, the C-terminal tail of CAP associates with the nucleotide-sensing region of actin, and this interaction is required for rapid re-charging of actin by both yeast and mammalian CAPs. These data uncover the conserved structural basis and biological role of protein-catalyzed re-charging of actin monomers.


Assuntos
Proteínas de Capeamento de Actina/química , Citoesqueleto de Actina/ultraestrutura , Actinas/química , Difosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/química , Proteínas de Transporte/química , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Capeamento de Actina/genética , Proteínas de Capeamento de Actina/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Difosfato de Adenosina/química , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Cinética , Camundongos , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
7.
J Cell Biol ; 216(9): 2859-2875, 2017 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-28663347

RESUMO

Cell motility depends on tight coordination between the microtubule (MT) and actin cytoskeletons, but the mechanisms underlying this MT-actin cross talk have remained poorly understood. Here, we show that the tumor suppressor protein adenomatous polyposis coli (APC), which is a known MT-associated protein, directly nucleates actin assembly to promote directed cell migration. By changing only two residues in APC, we generated a separation-of-function mutant, APC (m4), that abolishes actin nucleation activity without affecting MT interactions. Expression of full-length APC carrying the m4 mutation (APC (m4)) rescued cellular defects in MT organization, MT dynamics, and mitochondrial distribution caused by depletion of endogenous APC but failed to restore cell migration. Wild-type APC and APC (m4) localized to focal adhesions (FAs), and APC (m4) was defective in promoting actin assembly at FAs to facilitate MT-induced FA turnover. These results provide the first direct evidence for APC-mediated actin assembly in vivo and establish a role for APC in coordinating MTs and actin at FAs to direct cell migration.


Assuntos
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Proteína da Polipose Adenomatosa do Colo/metabolismo , Movimento Celular , Adesões Focais/metabolismo , Microtúbulos/metabolismo , Citoesqueleto de Actina/genética , Actinas/genética , Proteína da Polipose Adenomatosa do Colo/genética , Linhagem Celular Tumoral , Adesões Focais/genética , Humanos , Microscopia de Fluorescência , Microscopia de Vídeo , Microtúbulos/genética , Mutagênese Sítio-Dirigida , Mutação , Interferência de RNA , Transdução de Sinais , Fatores de Tempo , Transfecção
8.
Science ; 352(6288): 1004-9, 2016 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-27199431

RESUMO

Microtubules (MTs) govern actin network remodeling in a wide range of biological processes, yet the mechanisms underlying this cytoskeletal cross-talk have remained obscure. We used single-molecule fluorescence microscopy to show that the MT plus-end-associated protein CLIP-170 binds tightly to formins to accelerate actin filament elongation. Furthermore, we observed mDia1 dimers and CLIP-170 dimers cotracking growing filament ends for several minutes. CLIP-170-mDia1 complexes promoted actin polymerization ~18 times faster than free-barbed-end growth while simultaneously enhancing protection from capping proteins. We used a MT-actin dynamics co-reconstitution system to observe CLIP-170-mDia1 complexes being recruited to growing MT ends by EB1. The complexes triggered rapid growth of actin filaments that remained attached to the MT surface. These activities of CLIP-170 were required in primary neurons for normal dendritic morphology. Thus, our results reveal a cellular mechanism whereby growing MT plus ends direct rapid actin assembly.


Assuntos
Citoesqueleto de Actina/química , Citoesqueleto/química , Proteínas Associadas aos Microtúbulos/química , Microtúbulos/química , Proteínas de Neoplasias/química , Neurônios/metabolismo , Citoesqueleto de Actina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Células Cultivadas , Proteínas Fetais/química , Proteínas Fetais/metabolismo , Forminas , Humanos , Proteínas dos Microfilamentos/química , Proteínas dos Microfilamentos/metabolismo , Microscopia de Fluorescência , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Polimerização , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Multimerização Proteica , Ratos
9.
Mol Biol Cell ; 27(5): 828-37, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26764093

RESUMO

Formins comprise a large family of proteins with diverse roles in remodeling the actin cytoskeleton. However, the spatiotemporal mechanisms used by cells to control formin activities are only beginning to be understood. Here we dissected Smy1, which has dual roles in regulating formins and myosin. Using mutagenesis, we identified specific sequences in Smy1 critical for its in vitro inhibitory effects on the FH2 domain of the formin Bnr1. By integrating smy1 alleles targeting those sequences, we genetically uncoupled Smy1's functions in regulating formins and myosin. Quantitative imaging analysis further demonstrated that the ability of Smy1 to directly control Bnr1 activity is crucial in vivo for proper actin cable length, shape, and velocity and, in turn, efficient secretory vesicle transport. A Smy1-like sequence motif was also identified in a different Bnr1 regulator, Bud14, and found to be essential for Bud14 functions in regulating actin cable architecture and function in vivo. Together these observations reveal unanticipated mechanistic ties between two distinct formin regulators. Further, they emphasize the importance of tightly controlling formin activities in vivo to generate specialized geometries and dynamics of actin structures tailored to their physiological roles.


Assuntos
Citoesqueleto de Actina/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Citoesqueleto de Actina/genética , Proteínas do Citoesqueleto/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Mutação , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Miosina Tipo V/genética , Miosina Tipo V/metabolismo , Miosinas/genética , Miosinas/metabolismo , Domínios Proteicos , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo
10.
PLoS Comput Biol ; 11(6): e1004160, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26107518

RESUMO

Actin cables are linear cytoskeletal structures that serve as tracks for myosin-based intracellular transport of vesicles and organelles in both yeast and mammalian cells. In a yeast cell undergoing budding, cables are in constant dynamic turnover yet some cables grow from the bud neck toward the back of the mother cell until their length roughly equals the diameter of the mother cell. This raises the question: how is the length of these cables controlled? Here we describe a novel molecular mechanism for cable length control inspired by recent experimental observations in cells. This "antenna mechanism" involves three key proteins: formins, which polymerize actin, Smy1 proteins, which bind formins and inhibit actin polymerization, and myosin motors, which deliver Smy1 to formins, leading to a length-dependent actin polymerization rate. We compute the probability distribution of cable lengths as a function of several experimentally tuneable parameters such as the formin-binding affinity of Smy1 and the concentration of myosin motors delivering Smy1. These results provide testable predictions of the antenna mechanism of actin-cable length control.


Assuntos
Actinas/química , Actinas/metabolismo , Modelos Moleculares , Biologia Computacional , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/metabolismo , Miosinas/química , Miosinas/metabolismo , Polimerização , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
11.
J Biol Chem ; 289(44): 30732-30742, 2014 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-25228691

RESUMO

Srv2/CAP is a conserved actin-binding protein with important roles in driving cellular actin dynamics in diverse animal, fungal, and plant species. However, there have been conflicting reports about whether the activities of Srv2/CAP are conserved, particularly between yeast and mammalian homologs. Yeast Srv2 has two distinct functions in actin turnover: its hexameric N-terminal-half enhances cofilin-mediated severing of filaments, while its C-terminal-half catalyzes dissociation of cofilin from ADP-actin monomers and stimulates nucleotide exchange. Here, we dissected the structure and function of mouse CAP1 to better understand its mechanistic relationship to yeast Srv2. Although CAP1 has a shorter N-terminal oligomerization sequence compared with Srv2, we find that the N-terminal-half of CAP1 (N-CAP1) forms hexameric structures with six protrusions, similar to N-Srv2. Further, N-CAP1 autonomously binds to F-actin and decorates the sides and ends of filaments, altering F-actin structure and enhancing cofilin-mediated severing. These activities depend on conserved surface residues on the helical-folded domain. Moreover, N-CAP1 enhances yeast cofilin-mediated severing, and conversely, yeast N-Srv2 enhances human cofilin-mediated severing, highlighting the mechanistic conservation between yeast and mammals. Further, we demonstrate that the C-terminal actin-binding ß-sheet domain of CAP1 is sufficient to catalyze nucleotide-exchange of ADP-actin monomers, while in the presence of cofilin this activity additionally requires the WH2 domain. Thus, the structures, activities, and mechanisms of mouse and yeast Srv2/CAP homologs are remarkably well conserved, suggesting that the same activities and mechanisms underlie many of the diverse actin-based functions ascribed to Srv2/CAP homologs in different organisms.


Assuntos
Actinas/química , Proteínas de Transporte/química , Fatores de Despolimerização de Actina/química , Actinas/ultraestrutura , Proteínas Adaptadoras de Transdução de Sinal/química , Difosfato de Adenosina/química , Animais , Proteínas de Transporte/fisiologia , Proteínas do Citoesqueleto/química , Células HEK293 , Humanos , Camundongos , Ligação Proteica , Multimerização Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/química , Especificidade da Espécie
12.
Mol Biol Cell ; 25(5): 658-68, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24403606

RESUMO

Formins constitute a large family of proteins that regulate the dynamics and organization of both the actin and microtubule cytoskeletons. Previously we showed that the formin mDia1 helps tether microtubules at the cell cortex, acting downstream of the ErbB2 receptor tyrosine kinase. Here we further study the contributions of mDia1 and its two most closely related formins, mDia2 and mDia3, to cortical microtubule capture and ErbB2-dependent breast carcinoma cell migration. We find that depletion of each of these three formins strongly disrupts chemotaxis without significantly affecting actin-based structures. Further, all three formins are required for formation of cortical microtubules in a nonredundant manner, and formin proteins defective in actin polymerization remain active for microtubule capture. Using affinity purification and mass spectrometry analysis, we identify differential binding partners of the formin-homology domain 2 (FH2) of mDia1, mDia2, and mDia3, which may explain their nonredundant roles in microtubule capture. The FH2 domain of mDia1 specifically interacts with Rab6-interacting protein 2 (Rab6IP2). Further, mDia1 is required for cortical localization of Rab6IP2, and concomitant depletion of Rab6IP2 and IQGAP1 severely disrupts cortical capture of microtubules, demonstrating the coinvolvement of mDia1, IQGAP1, and Rab6IP2 in microtubule tethering at the leading edge.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Proteínas de Transporte/fisiologia , Movimento Celular , Microtúbulos/metabolismo , Actinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Quimiotaxia , Forminas , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas dos Microfilamentos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Ferroproteínas não Heme/metabolismo , Estrutura Terciária de Proteína , Coelhos , Receptor ErbB-2/metabolismo , Transdução de Sinais
13.
J Biol Chem ; 288(19): 13897-905, 2013 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-23558679

RESUMO

BACKGROUND: Vertebrate APC collaborates with Dia through its Basic domain to assemble actin filaments. RESULTS: Despite limited sequence homology between the vertebrate and Drosophila APC Basic domains, Drosophila APC1 collaborates with Dia to stimulate actin assembly in vitro. CONCLUSION: The mechanism of actin assembly is highly conserved over evolution. SIGNIFICANCE: APC-Dia collaborations may be crucial in a wide range of animal cells. Adenomatous polyposis coli (APC) is a large multidomain protein that regulates the cytoskeleton. Recently, it was shown that vertebrate APC through its Basic domain directly collaborates with the formin mDia1 to stimulate actin filament assembly in the presence of nucleation barriers. However, it has been unclear whether these activities extend to homologues of APC and Dia in other organisms. Drosophila APC and Dia are each required to promote actin furrow formation in the syncytial embryo, suggesting a potential collaboration in actin assembly, but low sequence homology between the Basic domains of Drosophila and vertebrate APC has left their functional and mechanistic parallels uncertain. To address this question, we purified Drosophila APC1 and Dia and determined their individual and combined effects on actin assembly using both bulk fluorescence assays and total internal reflection fluorescence microscopy. Our data show that APC1, similar to its vertebrate homologue, bound to actin monomers and nucleated and bundled filaments. Further, Drosophila Dia nucleated actin assembly and protected growing filament barbed ends from capping protein. Drosophila APC1 and Dia directly interacted and collaborated to promote actin assembly in the combined presence of profilin and capping protein. Thus, despite limited sequence homology, Drosophila and vertebrate APCs exhibit highly related activities and mechanisms and directly collaborate with formins. These results suggest that APC-Dia interactions in actin assembly are conserved and may underlie important in vivo functions in a broad range of animal phyla.


Assuntos
Actinas/química , Proteínas de Transporte/química , Proteínas de Drosophila/química , Drosophila melanogaster , Multimerização Proteica , Proteínas Supressoras de Tumor/química , Animais , Proteína de Capeamento de Actina CapZ/química , Proteínas do Citoesqueleto , Forminas , Cinética , Fragmentos de Peptídeos/química , Profilinas/química , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos
14.
Science ; 336(6085): 1164-8, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22654058

RESUMO

Interacting sets of actin assembly factors work together in cells, but the underlying mechanisms have remained obscure. We used triple-color single-molecule fluorescence microscopy to image the tumor suppressor adenomatous polyposis coli (APC) and the formin mDia1 during filament assembly. Complexes consisting of APC, mDia1, and actin monomers initiated actin filament formation, overcoming inhibition by capping protein and profilin. Upon filament polymerization, the complexes separated, with mDia1 moving processively on growing barbed ends while APC remained at the site of nucleation. Thus, the two assembly factors directly interact to initiate filament assembly and then separate but retain independent associations with either end of the growing filament.


Assuntos
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteína da Polipose Adenomatosa do Colo/metabolismo , Actinas/química , Proteínas Adaptadoras de Transdução de Sinal/química , Proteína da Polipose Adenomatosa do Colo/química , Animais , Microscopia de Fluorescência , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Profilinas/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Coelhos
15.
Nature ; 470(7334): 414-8, 2011 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-21331046

RESUMO

Toll-like receptors (TLRs) function as initiators of inflammation through their ability to sense pathogen-associated molecular patterns and products of tissue damage. Transcriptional activation of many TLR-responsive genes requires an initial de-repression step in which nuclear receptor co-repressor (NCoR) complexes are actively removed from the promoters of target genes to relieve basal repression. Ligand-dependent SUMOylation of liver X receptors (LXRs) has been found to suppress TLR4-induced transcription potently by preventing the NCoR clearance step, but the underlying mechanisms remain enigmatic. Here we provide evidence that coronin 2A (CORO2A), a component of the NCoR complex of previously unknown function, mediates TLR-induced NCoR turnover by a mechanism involving interaction with oligomeric nuclear actin. SUMOylated LXRs block NCoR turnover by binding to a conserved SUMO2/SUMO3-interaction motif in CORO2A and preventing actin recruitment. Intriguingly, the LXR transrepression pathway can itself be inactivated by inflammatory signals that induce calcium/calmodulin-dependent protein kinase IIγ (CaMKIIγ)-dependent phosphorylation of LXRs, leading to their deSUMOylation by the SUMO protease SENP3 and release from CORO2A. These findings uncover a CORO2A-actin-dependent mechanism for the de-repression of inflammatory response genes that can be differentially regulated by phosphorylation and by nuclear receptor signalling pathways that control immunity and homeostasis.


Assuntos
Actinas/metabolismo , Regulação da Expressão Gênica , Inflamação/genética , Proteínas dos Microfilamentos/metabolismo , Actinas/química , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Linhagem Celular , Cisteína Endopeptidases , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Células HeLa , Homeostase/genética , Humanos , Lipopolissacarídeos/farmacologia , Receptores X do Fígado , Camundongos , Proteínas dos Microfilamentos/química , Proteínas dos Microfilamentos/deficiência , Proteínas dos Microfilamentos/genética , Receptores Nucleares Órfãos/metabolismo , Peptídeo Hidrolases/metabolismo , Peritonite/induzido quimicamente , Peritonite/metabolismo , Fosforilação , Regiões Promotoras Genéticas/genética , Estrutura Terciária de Proteína , Transdução de Sinais , Sumoilação , Tioglicolatos/farmacologia , Receptores Toll-Like/metabolismo
16.
J Cell Biol ; 189(7): 1087-96, 2010 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-20566685

RESUMO

The tumor suppressor protein adenomatous polyposis coli (APC) regulates cell protrusion and cell migration, processes that require the coordinated regulation of actin and microtubule dynamics. APC localizes in vivo to microtubule plus ends and actin-rich cortical protrusions, and has well-documented direct effects on microtubule dynamics. However, its potential effects on actin dynamics have remained elusive. Here, we show that the C-terminal "basic" domain of APC (APC-B) potently nucleates the formation of actin filaments in vitro and stimulates actin assembly in cells. Nucleation is achieved by a mechanism involving APC-B dimerization and recruitment of multiple actin monomers. Further, APC-B nucleation activity is synergistic with its in vivo binding partner, the formin mDia1. Together, APC-B and mDia1 overcome a dual cellular barrier to actin assembly imposed by profilin and capping protein. These observations define a new function for APC and support an emerging view of collaboration between distinct actin assembly-promoting factors with complementary activities.


Assuntos
Actinas/metabolismo , Proteína da Polipose Adenomatosa do Colo/fisiologia , Proteínas de Transporte/fisiologia , Proteínas de Capeamento de Actina , Animais , Proteínas Fetais/fisiologia , Forminas , Camundongos , Proteínas dos Microfilamentos/fisiologia , Células NIH 3T3 , Proteínas Nucleares/fisiologia , Profilinas , Multimerização Proteica , Transporte Proteico
17.
Mol Cell ; 34(3): 364-74, 2009 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-19450534

RESUMO

Rapid and polarized turnover of actin networks is essential for motility, endocytosis, cytokinesis, and other cellular processes. However, the mechanisms that provide tight spatiotemporal control of actin disassembly remain poorly understood. Here, we show that yeast coronin (Crn1) makes a unique contribution to this process by differentially interacting with and regulating the effects of cofilin on ATP/ADP+P(i) versus ADP actin filaments. Crn1 potently blocks cofilin severing of newly assembled (ATP/ADP+P(i)) filaments but synergizes with cofilin to sever older (ADP) filaments. Thus, Crn1 has qualitatively distinct/opposite effects on actin dynamics depending on the nucleotide state of actin. This bimodal mechanism requires two separate actin-binding domains in Crn1. Consistent with these activities, Crn1 excludes GFP-Cof1 from newly assembled regions of actin networks in vivo and accelerates cellular actin turnover by four fold. We conclude that coronin polarizes the spatial distribution and activity of cofilin to promote selective disassembly of older actin filaments.


Assuntos
Actinas/metabolismo , Proteínas dos Microfilamentos/metabolismo , Nucleotídeos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Actinas/genética , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Cofilina 1/genética , Cofilina 1/metabolismo , Proteínas dos Microfilamentos/genética , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
18.
J Biol Chem ; 284(16): 10923-34, 2009 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-19201756

RESUMO

Srv2/cyclase-associated protein is expressed in virtually all plant, animal, and fungal organisms and has a conserved role in promoting actin depolymerizing factor/cofilin-mediated actin turnover. This is achieved by the abilities of Srv2 to recycle cofilin from ADP-actin monomers and to promote nucleotide exchange (ATP for ADP) on actin monomers. Despite this important and universal role in facilitating actin turnover, the mechanism underlying Srv2 function has remained elusive. Previous studies have demonstrated a critical functional role for the G-actin-binding C-terminal half of Srv2. Here we describe an equally important role in vivo for the N-terminal half of Srv2 in driving actin turnover. We pinpoint this activity to a conserved patch of surface residues on the N-terminal dimeric helical folded domain of Srv2, and we show that this functional site interacts with cofilin-actin complexes. Furthermore, we show that this site is essential for Srv2 acceleration of cofilin-mediated actin turnover in vitro. A cognate Srv2-binding site is identified on a conserved surface of cofilin, suggesting that this function likely extends to other organisms. In addition, our analyses reveal that higher order oligomerization of Srv2 depends on its N-terminal predicted coiled coil domain and that oligomerization optimizes Srv2 function in vitro and in vivo. Based on these data, we present a revised model for the mechanism by which Srv2 promotes actin turnover, in which coordinated activities of its N- and C-terminal halves catalyze sequential steps in recycling cofilin and actin monomers.


Assuntos
Fatores de Despolimerização de Actina/química , Fatores de Despolimerização de Actina/metabolismo , Actinas/química , Actinas/metabolismo , Difosfato de Adenosina/análogos & derivados , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/metabolismo , Estrutura Terciária de Proteína , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Despolimerização de Actina/genética , Actinas/genética , Proteínas Adaptadoras de Transdução de Sinal , Difosfato de Adenosina/química , Difosfato de Adenosina/genética , Difosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Proteínas de Ciclo Celular/genética , Proteínas do Citoesqueleto/genética , Modelos Moleculares , Dados de Sequência Molecular , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Ligação Proteica , Proteínas de Saccharomyces cerevisiae/genética , Alinhamento de Sequência
19.
J Cell Biol ; 181(3): 523-36, 2008 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-18458159

RESUMO

A critical microtubule (MT) polarization event in cell migration is the Rho/mDia-dependent stabilization of a subset of MTs oriented toward the direction of migration. Although mDia nucleates actin filaments, it is unclear whether this or a separate activity of mDia underlies MT stabilization. We generated two actin mutants (K853A and I704A) in a constitutively active version of mDia2 containing formin homology domains 1 and 2 (FH1FH2) and found that they still induced stable MTs and bound to the MT TIP proteins EB1 and APC, which have also been implicated in MT stabilization. A dimerization-impaired mutant of mDia2 (W630A) also generated stable MTs in cells. We examined whether FH1FH2mDia2 had direct activity on MTs in vitro and found that it bound directly to MTs, stabilized MTs against cold- and dilution-induced disassembly, and reduced the rates of growth and shortening during MT assembly and disassembly, respectively. These results indicate that mDia2 has a novel MT stabilization activity that is separate from its actin nucleation activity.


Assuntos
Actinas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , NADPH Desidrogenase/metabolismo , Actinas/genética , Proteína da Polipose Adenomatosa do Colo/genética , Proteína da Polipose Adenomatosa do Colo/metabolismo , Animais , Dimerização , Ácido Glutâmico/metabolismo , Humanos , Camundongos , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/genética , NADPH Desidrogenase/genética , Células NIH 3T3 , Mutação Puntual , Ligação Proteica , Estrutura Quaternária de Proteína , Tubulina (Proteína)/metabolismo
20.
J Biol Chem ; 282(17): 12661-8, 2007 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-17293347

RESUMO

Adenomatous polyposis coli (APC) protein is a large tumor suppressor that is truncated in most colorectal cancers. The carboxyl-terminal third of APC protein mediates direct interactions with microtubules and the microtubule plus-end tracking protein EB1. In addition, APC has been localized to actin-rich regions of cells, but the mechanism and functional significance of this localization have remained unclear. Here we show that purified carboxyl-terminal basic domain of human APC protein (APC-basic) bound directly to and bundled actin filaments and associated with actin stress fibers in microinjected cells. Actin filaments and microtubules competed for binding to APC-basic, but APC-basic also could cross-link actin filaments and microtubules at specific concentrations, suggesting a possible role in cytoskeletal cross-talk. APC interactions with actin in vitro were inhibited by its ligand EB1, and co-microinjection of EB1 prevented APC association with stress fibers. Point mutations in EB1 that disrupted APC binding relieved the inhibition in vitro and restored APC localization to stress fibers in vivo, demonstrating that EB1-APC regulation is direct. Because tumor formation and metastasis involve coordinated changes in the actin and microtubule cytoskeletons, this novel function for APC and its regulation by EB1 may have direct implications for understanding the molecular basis of tumor suppression.


Assuntos
Citoesqueleto de Actina/química , Proteína da Polipose Adenomatosa do Colo/química , Fibras de Estresse/química , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/ultraestrutura , Proteína da Polipose Adenomatosa do Colo/genética , Proteína da Polipose Adenomatosa do Colo/metabolismo , Proteína da Polipose Adenomatosa do Colo/farmacologia , Animais , Humanos , Camundongos , Células NIH 3T3 , Neoplasias/metabolismo , Mutação Puntual , Ligação Proteica/genética , Estrutura Terciária de Proteína/genética , Fibras de Estresse/genética , Fibras de Estresse/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA