Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
STAR Protoc ; 5(1): 102913, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38393950

RESUMO

Leakage of mitochondrial or nuclear DNA into the cytosol can occur following viral infections, radiation damage, and some cancers. Here, we present an optimized protocol for isolating and quantifying cytosolic DNA from mammalian cells. We describe steps for collecting cytosolic fractions from cells, extracting DNA using columns, and quantifying extracted DNA using qPCR. This straightforward protocol can be completed in as little as 5 hours, and allows for the identification of the source of DNA. For complete details on the use and execution of this protocol, please refer to Jahun et al.1.


Assuntos
DNA , Mitocôndrias , Animais , Citosol , Mamíferos/genética
2.
Viruses ; 14(8)2022 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-35893676

RESUMO

TRIM7 catalyzes the ubiquitination of multiple substrates with unrelated biological functions. This cross-reactivity is at odds with the specificity usually displayed by enzymes, including ubiquitin ligases. Here we show that TRIM7's extreme substrate promiscuity is due to a highly unusual binding mechanism, in which the PRYSPRY domain captures any ligand with a C-terminal helix that terminates in a hydrophobic residue followed by a glutamine. Many of the non-structural proteins found in RNA viruses contain C-terminal glutamines as a result of polyprotein cleavage by 3C protease. This viral processing strategy generates novel substrates for TRIM7 and explains its ability to inhibit Coxsackie virus and norovirus replication. In addition to viral proteins, cellular proteins such as glycogenin have evolved C-termini that make them a TRIM7 substrate. The 'helix-ΦQ' degron motif recognized by TRIM7 is reminiscent of the N-end degron system and is found in ~1% of cellular proteins. These features, together with TRIM7's restricted tissue expression and lack of immune regulation, suggest that viral restriction may not be its physiological function.


Assuntos
Infecções por Caliciviridae , Glutamina , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases , Proteases Virais 3C , Enterovirus , Humanos , Norovirus , Proteínas com Motivo Tripartido/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Virais/genética
3.
BMC Nephrol ; 23(1): 199, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35641961

RESUMO

BACKGROUND: Dialysis patients and immunosuppressed renal patients are at increased risk of COVID-19 and were excluded from vaccine trials. We conducted a prospective multicentre study to assess SARS-CoV-2 vaccine antibody responses in dialysis patients and renal transplant recipients, and patients receiving immunosuppression for autoimmune disease. METHODS: Patients were recruited from three UK centres (ethics:20/EM/0180) and compared to healthy controls (ethics:17/EE/0025). SARS-CoV-2 IgG antibodies to spike protein were measured using a multiplex Luminex assay, after first and second doses of Pfizer BioNTech BNT162b2(Pfizer) or Oxford-AstraZeneca ChAdOx1nCoV-19(AZ) vaccine. RESULTS: Six hundred ninety-two patients were included (260 dialysis, 209 transplant, 223 autoimmune disease (prior rituximab 128(57%)) and 144 healthy controls. 299(43%) patients received Pfizer vaccine and 379(55%) received AZ. Following two vaccine doses, positive responses occurred in 96% dialysis, 52% transplant, 70% autoimmune patients and 100% of healthy controls. In dialysis patients, higher antibody responses were observed with the Pfizer vaccination. Predictors of poor antibody response were triple immunosuppression (adjusted odds ratio [aOR]0.016;95%CI0.002-0.13;p < 0.001) and mycophenolate mofetil (MMF) (aOR0.2;95%CI 0.1-0.42;p < 0.001) in transplant patients; rituximab within 12 months in autoimmune patients (aOR0.29;95%CI 0.008-0.096;p < 0.001) and patients receiving immunosuppression with eGFR 15-29 ml/min (aOR0.031;95%CI 0.11-0.84;p = 0.021). Lower antibody responses were associated with a higher chance of a breakthrough infection. CONCLUSIONS: Amongst dialysis, kidney transplant and autoimmune populations SARS-CoV-2 vaccine antibody responses are reduced compared to healthy controls. A reduced response to vaccination was associated with rituximab, MMF, triple immunosuppression CKD stage 4. Vaccine responses increased after the second dose, suggesting low-responder groups should be prioritised for repeated vaccination. Greater antibody responses were observed with the mRNA Pfizer vaccine compared to adenovirus AZ vaccine in dialysis patients suggesting that Pfizer SARS-CoV-2 vaccine should be the preferred vaccine choice in this sub-group.


Assuntos
Doenças Autoimunes , COVID-19 , Vacinas Virais , Vacina BNT162 , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , Ácido Micofenólico , Diálise Renal , Rituximab , SARS-CoV-2
4.
Cell Rep ; 38(7): 110393, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35143756

RESUMO

B cells are important in immunity to both severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection and vaccination, but B cell receptor (BCR) repertoire development in these contexts has not been compared. We analyze serial samples from 171 SARS-CoV-2-infected individuals and 63 vaccine recipients and find the global BCR repertoire differs between them. Following infection, immunoglobulin (Ig)G1/3 and IgA1 BCRs increase, somatic hypermutation (SHM) decreases, and, in severe disease, IgM and IgA clones are expanded. In contrast, after vaccination, the proportion of IgD/M BCRs increase, SHM is unchanged, and expansion of IgG clones is prominent. VH1-24, which targets the N-terminal domain (NTD) and contributes to neutralization, is expanded post infection except in the most severe disease. Infection generates a broad distribution of SARS-CoV-2-specific clones predicted to target the spike protein, while a more focused response after vaccination mainly targets the spike's receptor-binding domain. Thus, the nature of SARS-CoV-2 exposure differentially affects BCR repertoire development, potentially informing vaccine strategies.


Assuntos
COVID-19/imunologia , Receptores de Antígenos de Linfócitos B/imunologia , Vacinação , Linfócitos B/imunologia , Vacina BNT162/imunologia , COVID-19/prevenção & controle , Evolução Clonal , Humanos , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Pesadas de Imunoglobulinas/imunologia , Isotipos de Imunoglobulinas/genética , Isotipos de Imunoglobulinas/imunologia , Região Variável de Imunoglobulina/genética , Região Variável de Imunoglobulina/imunologia , Cinética , Receptores de Antígenos de Linfócitos B/genética , SARS-CoV-2/imunologia , Índice de Gravidade de Doença , Hipermutação Somática de Imunoglobulina/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia
5.
J Virol ; 96(3): e0192321, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-34787460

RESUMO

Akt (protein kinase B) is a key signaling protein in eukaryotic cells that controls many cellular processes, such as glucose metabolism and cell proliferation, for survival. As obligate intracellular pathogens, viruses modulate host cellular processes, including Akt signaling, for optimal replication. The mechanisms by which viruses modulate Akt and the resulting effects on the infectious cycle differ widely depending on the virus. In this study, we explored the effect of Akt serine 473 phosphorylation (p-Akt) during murine norovirus (MNV) infection. p-Akt increased during infection of murine macrophages with acute MNV-1 and persistent CR3 and CR6 strains. Inhibition of Akt with MK2206, an inhibitor of all three isoforms of Akt (Akt1/2/3), reduced infectious virus progeny of all three virus strains. This reduction was due to decreased viral genome replication (CR3), defective virus assembly (MNV-1), or altered cellular egress (CR3 and CR6) in a virus strain-dependent manner. Collectively, our data demonstrate that Akt activation increases in macrophages during the later stages of the MNV infectious cycle, which may enhance viral infection in unique ways for different virus strains. The data, for the first time, indicate a role for Akt signaling in viral assembly and highlight additional phenotypic differences between closely related MNV strains. IMPORTANCE Human noroviruses (HNoV) are a leading cause of viral gastroenteritis, resulting in high annual economic burden and morbidity, yet there are no small-animal models supporting productive HNoV infection or robust culture systems producing cell culture-derived virus stocks. As a result, research on drug discovery and vaccine development against norovirus infection has been challenging, and no targeted antivirals or vaccines against HNoV are approved. On the other hand, murine norovirus (MNV) replicates to high titers in cell culture and is a convenient and widespread model in norovirus research. Our data demonstrate the importance of Akt signaling during the late stage of the MNV life cycle. Notably, the effect of Akt signaling on genome replication, virus assembly, and cellular egress is virus strain specific, highlighting the diversity of biological phenotypes despite small genetic variability among norovirus strains. This study is the first to demonstrate a role for Akt in viral assembly.


Assuntos
Infecções por Caliciviridae/metabolismo , Infecções por Caliciviridae/virologia , Macrófagos/metabolismo , Macrófagos/virologia , Norovirus/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Replicação Viral , Animais , Infecções por Caliciviridae/imunologia , Suscetibilidade a Doenças , Interações Hospedeiro-Patógeno , Ativação de Macrófagos , Macrófagos/imunologia , Camundongos , Fosforilação , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Especificidade da Espécie
6.
J Virol ; 95(20): e0113421, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34346771

RESUMO

Murine norovirus (MNV) infection results in a late translation shutoff that is proposed to contribute to the attenuated and delayed innate immune response observed both in vitro and in vivo. Recently, we further demonstrated the activation of the α subunit of eukaryotic initiation factor 2 (eIF2α) kinase GCN2 during MNV infection, which has been previously linked to immunomodulation and resistance to inflammatory signaling during metabolic stress. While viral infection is usually associated with activation of double-stranded RNA (dsRNA) binding pattern recognition receptor PKR, we hypothesized that the establishment of a metabolic stress in infected cells is a proviral event, exploited by MNV to promote replication through weakening the activation of the innate immune response. In this study, we used multi-omics approaches to characterize cellular responses during MNV replication. We demonstrate the activation of pathways related to the integrated stress response, a known driver of anti-inflammatory phenotypes in macrophages. In particular, MNV infection causes an amino acid imbalance that is associated with GCN2 and ATF2 signaling. Importantly, this reprogramming lacks the features of a typical innate immune response, with the ATF/CHOP target GDF15 contributing to the lack of antiviral responses. We propose that MNV-induced metabolic stress supports the establishment of host tolerance to viral replication and propagation. IMPORTANCE During viral infection, host defenses are typically characterized by the secretion of proinflammatory autocrine and paracrine cytokines, potentiation of the interferon (IFN) response, and induction of the antiviral response via activation of JAK and Stat signaling. To avoid these and propagate, viruses have evolved strategies to evade or counteract host sensing. In this study, we demonstrate that murine norovirus controls the antiviral response by activating a metabolic stress response that activates the amino acid response and impairs inflammatory signaling. This highlights novel tools in the viral countermeasures arsenal and demonstrates the importance of the currently poorly understood metabolic reprogramming occurring during viral infections.


Assuntos
Infecções por Caliciviridae/imunologia , Macrófagos/virologia , Fator 2 Ativador da Transcrição/metabolismo , Animais , Antivirais , Infecções por Caliciviridae/metabolismo , Linhagem Celular , Fator de Iniciação 2 em Eucariotos/metabolismo , Imunidade Inata/imunologia , Inflamação/imunologia , Interferons , Macrófagos/imunologia , Camundongos , Norovirus/patogenicidade , Proteínas Serina-Treonina Quinases/metabolismo , Células RAW 264.7 , RNA de Cadeia Dupla/genética , Transdução de Sinais/imunologia , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/genética
7.
Immunity ; 54(6): 1257-1275.e8, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34051148

RESUMO

The kinetics of the immune changes in COVID-19 across severity groups have not been rigorously assessed. Using immunophenotyping, RNA sequencing, and serum cytokine analysis, we analyzed serial samples from 207 SARS-CoV2-infected individuals with a range of disease severities over 12 weeks from symptom onset. An early robust bystander CD8+ T cell immune response, without systemic inflammation, characterized asymptomatic or mild disease. Hospitalized individuals had delayed bystander responses and systemic inflammation that was already evident near symptom onset, indicating that immunopathology may be inevitable in some individuals. Viral load did not correlate with this early pathological response but did correlate with subsequent disease severity. Immune recovery is complex, with profound persistent cellular abnormalities in severe disease correlating with altered inflammatory responses, with signatures associated with increased oxidative phosphorylation replacing those driven by cytokines tumor necrosis factor (TNF) and interleukin (IL)-6. These late immunometabolic and immune defects may have clinical implications.


Assuntos
Linfócitos T CD8-Positivos/imunologia , COVID-19/imunologia , COVID-19/virologia , Interações Hospedeiro-Patógeno/imunologia , Ativação Linfocitária/imunologia , SARS-CoV-2/imunologia , Biomarcadores , Linfócitos T CD8-Positivos/metabolismo , COVID-19/diagnóstico , COVID-19/genética , Citocinas/metabolismo , Suscetibilidade a Doenças , Perfilação da Expressão Gênica , Humanos , Mediadores da Inflamação/metabolismo , Estudos Longitudinais , Ativação Linfocitária/genética , Fosforilação Oxidativa , Fenótipo , Prognóstico , Espécies Reativas de Oxigênio/metabolismo , Índice de Gravidade de Doença , Transcriptoma
8.
Nature ; 592(7853): 277-282, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33545711

RESUMO

The spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is critical for virus infection through the engagement of the human ACE2 protein1 and is a major antibody target. Here we show that chronic infection with SARS-CoV-2 leads to viral evolution and reduced sensitivity to neutralizing antibodies in an immunosuppressed individual treated with convalescent plasma, by generating whole-genome ultra-deep sequences for 23 time points that span 101 days and using in vitro techniques to characterize the mutations revealed by sequencing. There was little change in the overall structure of the viral population after two courses of remdesivir during the first 57 days. However, after convalescent plasma therapy, we observed large, dynamic shifts in the viral population, with the emergence of a dominant viral strain that contained a substitution (D796H) in the S2 subunit and a deletion (ΔH69/ΔV70) in the S1 N-terminal domain of the spike protein. As passively transferred serum antibodies diminished, viruses with the escape genotype were reduced in frequency, before returning during a final, unsuccessful course of convalescent plasma treatment. In vitro, the spike double mutant bearing both ΔH69/ΔV70 and D796H conferred modestly decreased sensitivity to convalescent plasma, while maintaining infectivity levels that were similar to the wild-type virus.The spike substitution mutant D796H appeared to be the main contributor to the decreased susceptibility to neutralizing antibodies, but this mutation resulted in an infectivity defect. The spike deletion mutant ΔH69/ΔV70 had a twofold higher level of infectivity than wild-type SARS-CoV-2, possibly compensating for the reduced infectivity of the D796H mutation. These data reveal strong selection on SARS-CoV-2 during convalescent plasma therapy, which is associated with the emergence of viral variants that show evidence of reduced susceptibility to neutralizing antibodies in immunosuppressed individuals.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19/terapia , COVID-19/virologia , Evolução Molecular , Mutagênese/efeitos dos fármacos , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/genética , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/farmacologia , Monofosfato de Adenosina/uso terapêutico , Idoso , Alanina/análogos & derivados , Alanina/farmacologia , Alanina/uso terapêutico , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , Doença Crônica , Genoma Viral/efeitos dos fármacos , Genoma Viral/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Evasão da Resposta Imune/efeitos dos fármacos , Evasão da Resposta Imune/genética , Evasão da Resposta Imune/imunologia , Tolerância Imunológica/efeitos dos fármacos , Tolerância Imunológica/imunologia , Imunização Passiva , Terapia de Imunossupressão , Masculino , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/imunologia , Mutação , Filogenia , SARS-CoV-2/imunologia , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Fatores de Tempo , Carga Viral/efeitos dos fármacos , Eliminação de Partículas Virais , Soroterapia para COVID-19
9.
Nat Commun ; 11(1): 6385, 2020 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-33318491

RESUMO

The response to the coronavirus disease 2019 (COVID-19) pandemic has been hampered by lack of an effective severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antiviral therapy. Here we report the use of remdesivir in a patient with COVID-19 and the prototypic genetic antibody deficiency X-linked agammaglobulinaemia (XLA). Despite evidence of complement activation and a robust T cell response, the patient developed persistent SARS-CoV-2 pneumonitis, without progressing to multi-organ involvement. This unusual clinical course is consistent with a contribution of antibodies to both viral clearance and progression to severe disease. In the absence of these confounders, we take an experimental medicine approach to examine the in vivo utility of remdesivir. Over two independent courses of treatment, we observe a temporally correlated clinical and virological response, leading to clinical resolution and viral clearance, with no evidence of acquired drug resistance. We therefore provide evidence for the antiviral efficacy of remdesivir in vivo, and its potential benefit in selected patients.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Imunidade Humoral/efeitos dos fármacos , SARS-CoV-2/efeitos dos fármacos , Monofosfato de Adenosina/uso terapêutico , Adulto , Alanina/uso terapêutico , Antivirais/uso terapêutico , COVID-19/virologia , Febre/prevenção & controle , Humanos , Imunidade Humoral/imunologia , Contagem de Linfócitos , Masculino , SARS-CoV-2/imunologia , SARS-CoV-2/fisiologia , Resultado do Tratamento
10.
Elife ; 92020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32558644

RESUMO

Previously, we showed that 3% (31/1032)of asymptomatic healthcare workers (HCWs) from a large teaching hospital in Cambridge, UK, tested positive for SARS-CoV-2 in April 2020. About 15% (26/169) HCWs with symptoms of coronavirus disease 2019 (COVID-19) also tested positive for SARS-CoV-2 (Rivett et al., 2020). Here, we show that the proportion of both asymptomatic and symptomatic HCWs testing positive for SARS-CoV-2 rapidly declined to near-zero between 25th April and 24th May 2020, corresponding to a decline in patient admissions with COVID-19 during the ongoing UK 'lockdown'. These data demonstrate how infection prevention and control measures including staff testing may help prevent hospitals from becoming independent 'hubs' of SARS-CoV-2 transmission, and illustrate how, with appropriate precautions, organizations in other sectors may be able to resume on-site work safely.


Assuntos
Técnicas de Laboratório Clínico/estatística & dados numéricos , Infecções por Coronavirus/transmissão , Pessoal de Saúde , Programas de Rastreamento/estatística & dados numéricos , Doenças Profissionais/prevenção & controle , Pandemias , Pneumonia Viral/transmissão , Adulto , Doenças Assintomáticas , Betacoronavirus/genética , Betacoronavirus/isolamento & purificação , COVID-19 , Teste para COVID-19 , Infecções Comunitárias Adquiridas/transmissão , Busca de Comunicante , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/prevenção & controle , Transmissão de Doença Infecciosa/prevenção & controle , Inglaterra/epidemiologia , Características da Família , Feminino , Unidades Hospitalares , Hospitais de Ensino/organização & administração , Hospitais de Ensino/estatística & dados numéricos , Hospitais Universitários/organização & administração , Hospitais Universitários/estatística & dados numéricos , Humanos , Controle de Infecções , Transmissão de Doença Infecciosa do Paciente para o Profissional/estatística & dados numéricos , Masculino , Programas de Rastreamento/organização & administração , Pessoa de Meia-Idade , Nasofaringe/virologia , Doenças Profissionais/epidemiologia , Pandemias/prevenção & controle , Admissão do Paciente/estatística & dados numéricos , Pneumonia Viral/diagnóstico , Pneumonia Viral/epidemiologia , Pneumonia Viral/prevenção & controle , Prevalência , Avaliação de Programas e Projetos de Saúde , Reação em Cadeia da Polimerase em Tempo Real , SARS-CoV-2 , Avaliação de Sintomas
11.
mBio ; 11(2)2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32184238

RESUMO

Human noroviruses (HuNoV) are a leading cause of viral gastroenteritis worldwide and a significant cause of morbidity and mortality in all age groups. The recent finding that HuNoV can be propagated in B cells and mucosa-derived intestinal epithelial organoids (IEOs) has transformed our ability to dissect the life cycle of noroviruses. Using transcriptome sequencing (RNA-Seq) of HuNoV-infected intestinal epithelial cells (IECs), we have found that replication of HuNoV in IECs results in interferon (IFN)-induced transcriptional responses and that HuNoV replication in IECs is sensitive to IFN. This contrasts with previous studies that suggested that the innate immune response may play no role in the restriction of HuNoV replication in immortalized cells. We demonstrated that inhibition of Janus kinase 1 (JAK1)/JAK2 enhanced HuNoV replication in IECs. Surprisingly, targeted inhibition of cellular RNA polymerase II-mediated transcription was not detrimental to HuNoV replication but instead enhanced replication to a greater degree than blocking of JAK signaling directly. Furthermore, we demonstrated for the first time that IECs generated from genetically modified intestinal organoids, engineered to be deficient in the interferon response, were more permissive to HuNoV infection. Taking the results together, our work revealed that IFN-induced transcriptional responses restrict HuNoV replication in IECs and demonstrated that inhibition of these responses mediated by modifications of the culture conditions can greatly enhance the robustness of the norovirus culture system.IMPORTANCE Noroviruses are a major cause of gastroenteritis worldwide, and yet the challenges associated with their growth in culture have greatly hampered the development of therapeutic approaches and have limited our understanding of the cellular pathways that control infection. Here, we show that human intestinal epithelial cells, which represent the first point of entry of human noroviruses into the host, limit virus replication by induction of innate responses. Furthermore, we show that modulating the ability of intestinal epithelial cells to induce transcriptional responses to HuNoV infection can significantly enhance human norovirus replication in culture. Collectively, our findings provide new insights into the biological pathways that control norovirus infection but also identify mechanisms that enhance the robustness of norovirus culture.


Assuntos
Células Epiteliais/virologia , Imunidade Inata , Intestinos/citologia , Norovirus/fisiologia , RNA Polimerase II/metabolismo , Replicação Viral , Linhagem Celular , Células Epiteliais/imunologia , Humanos , Interferon Tipo I/imunologia , Intestinos/virologia , Janus Quinases/metabolismo , RNA Polimerase II/genética , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais , Transcrição Gênica
12.
mBio ; 10(5)2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31575769

RESUMO

Human norovirus (HuNoV) is the main cause of gastroenteritis worldwide, yet no therapeutics are currently available. Here, we utilize a human norovirus replicon in human gastric tumor (HGT) cells to identify host factors involved in promoting or inhibiting HuNoV replication. We observed that an interferon (IFN)-cured population of replicon-harboring HGT cells (HGT-Cured) was enhanced in their ability to replicate transfected HuNoV RNA compared to parental HGT cells, suggesting that differential gene expression in HGT-Cured cells created an environment favoring norovirus replication. Microarrays were used to identify genes differentially regulated in HGT-NV and HGT-Cured compared to parental cells. We found that IFN lambda receptor (IFNLR1) expression was highly reduced in HGT-NV and HGT-Cured cells. While all three cell lines responded to exogenous IFN-ß by inducing interferon-stimulated genes, HGT-NV and HGT-Cured cells failed to respond to exogenous IFN-λ. Methylation-sensitive PCR showed that an increased methylation of the IFNLR1 promoter and inhibition of DNA methyltransferase activity partially reactivated IFNLR1 expression in HGT-NV and HGT-Cured cells, indicating that host adaptation occurred via epigenetic reprogramming. Moreover, IFNLR1 ectopic expression rescued response to IFN-λ and restricted HuNoV replication in HGT-NV cells. We conclude that type III IFN is important in inhibiting HuNoV replication in vitro and that the loss of IFNLR1 enhances replication of HuNoV. This study unravels for the first time epigenetic reprogramming of the interferon lambda receptor as a new mechanism of cellular adaptation during long-term RNA virus replication and shows that an endogenous level of interferon lambda signaling is able to control human norovirus replication.IMPORTANCE Noroviruses are one of the most widespread causes of gastroenteritis, yet no suitable therapeutics are available for their control. Moreover, to date, knowledge of the precise cellular processes that control the replication of the human norovirus remains ill defined. Recent work has highlighted the importance of type III interferon (IFN) responses in the restriction of viruses that infect the intestine. Here, we analyzed the adaptive changes required to support long-term replication of noroviruses in cell culture and found that the receptor for type III IFN is decreased in its expression. We confirmed that this decreased expression was driven by epigenetic modifications and that cells lacking the type III IFN receptor are more permissive for norovirus replication. This work provides new insights into key host-virus interactions required for the control of noroviruses and opens potential novel avenues for their therapeutic control.


Assuntos
Epigênese Genética , Norovirus/fisiologia , Receptores de Interferon/metabolismo , Replicação Viral , Linhagem Celular , Linhagem Celular Tumoral , Regulação para Baixo , Humanos , Interferons/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Interferon/genética , Análise Serial de Tecidos , Interferon lambda
13.
PLoS Pathog ; 15(9): e1008009, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31536612

RESUMO

Human noroviruses (HuNoVs) are the most common cause of foodborne illness, with a societal cost of $60 billion and 219,000 deaths/year. The lack of robust small animal models has significantly hindered the understanding of norovirus biology and the development of effective therapeutics. Here we report that HuNoV GI and GII replicate to high titers in zebrafish (Danio rerio) larvae; replication peaks at day 2 post infection and is detectable for at least 6 days. The virus (HuNoV GII.4) could be passaged from larva to larva two consecutive times. HuNoV is detected in cells of the hematopoietic lineage and the intestine, supporting the notion of a dual tropism. Antiviral treatment reduces HuNoV replication by >2 log10, showing that this model is suited for antiviral studies. Zebrafish larvae constitute a simple and robust replication model that will largely facilitate studies of HuNoV biology and the development of antiviral strategies.


Assuntos
Norovirus/fisiologia , Norovirus/patogenicidade , Replicação Viral/fisiologia , Peixe-Zebra/virologia , Animais , Antivirais/administração & dosagem , Infecções por Caliciviridae/virologia , Doenças Transmitidas por Alimentos/virologia , Gastroenterite/virologia , Interações entre Hospedeiro e Microrganismos , Humanos , Larva/virologia , Metagenômica , Modelos Animais , Norovirus/genética , Cultura de Vírus/métodos , Replicação Viral/efeitos dos fármacos
14.
PLoS Pathog ; 15(4): e1007709, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31017981

RESUMO

Norovirus infection is the leading cause of food-borne gastroenteritis worldwide, being responsible for over 200,000 deaths annually. Studies with murine norovirus (MNV) showed that protective STAT1 signaling controls viral replication and pathogenesis, but the immune mechanisms that noroviruses exploit to induce pathology are elusive. Here, we show that gastrointestinal MNV infection leads to widespread IL-1ß maturation in MNV-susceptible STAT1-deficient mice. MNV activates the canonical Nlrp3 inflammasome in macrophages, leading to maturation of IL-1ß and to Gasdermin D (GSDMD)-dependent pyroptosis. STAT1-deficient macrophages displayed increased MAVS-mediated expression of pro-IL-1ß, facilitating elevated Nlrp3-dependent release of mature IL-1ß upon MNV infection. Accordingly, MNV-infected Stat1-/- mice showed Nlrp3-dependent maturation of IL-1ß as well as Nlrp3-dependent pyroptosis as assessed by in vivo cleavage of GSDMD to its active N-terminal fragment. While MNV-induced diarrheic responses were not affected, Stat1-/- mice additionally lacking either Nlrp3 or GSDMD displayed lower levels of the fecal inflammatory marker Lipocalin-2 as well as delayed lethality after gastrointestinal MNV infection. Together, these results uncover new insights into the mechanisms of norovirus-induced inflammation and cell death, thereby revealing Nlrp3 inflammasome activation and ensuing GSDMD-driven pyroptosis as contributors to MNV-induced immunopathology in susceptible STAT1-deficient mice.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Infecções por Caliciviridae/patologia , Trato Gastrointestinal/patologia , Inflamassomos/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piroptose/fisiologia , Fator de Transcrição STAT1/fisiologia , Animais , Proteínas Reguladoras de Apoptose/genética , Infecções por Caliciviridae/imunologia , Infecções por Caliciviridae/metabolismo , Infecções por Caliciviridae/virologia , Células Cultivadas , Trato Gastrointestinal/imunologia , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/virologia , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/patologia , Macrófagos/virologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Norovirus/imunologia , Norovirus/patogenicidade , Proteínas de Ligação a Fosfato
15.
mBio ; 10(2)2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30862747

RESUMO

The metabolic pathways of central carbon metabolism, glycolysis and oxidative phosphorylation (OXPHOS), are important host factors that determine the outcome of viral infections and can be manipulated by some viruses to favor infection. However, mechanisms of metabolic modulation and their effects on viral replication vary widely. Herein, we present the first metabolomics and energetic profiling of norovirus-infected cells, which revealed increases in glycolysis, OXPHOS, and the pentose phosphate pathway (PPP) during murine norovirus (MNV) infection. Inhibiting glycolysis with 2-deoxyglucose (2DG) in macrophages revealed that glycolysis is an important factor for optimal MNV infection, while inhibiting the PPP and OXPHOS showed a relatively minor impact of these pathways on MNV infection. 2DG affected an early stage in the viral life cycle after viral uptake and capsid uncoating, leading to decreased viral protein production and viral RNA. The requirement of glycolysis was specific for MNV (but not astrovirus) infection, independent of the type I interferon antiviral response, and unlikely to be due to a lack of host cell nucleotide synthesis. MNV infection increased activation of the protein kinase Akt, but not AMP-activated protein kinase (AMPK), two master regulators of cellular metabolism, implicating Akt signaling in upregulating host metabolism during norovirus infection. In conclusion, our findings suggest that the metabolic state of target cells is an intrinsic host factor that determines the extent of norovirus replication and implicates glycolysis as a virulence determinant. They further point to cellular metabolism as a novel therapeutic target for norovirus infections and improvements in current human norovirus culture systems.IMPORTANCE Viruses depend on the host cells they infect to provide the machinery and substrates for replication. Host cells are highly dynamic systems that can alter their intracellular environment and metabolic behavior, which may be helpful or inhibitory for an infecting virus. In this study, we show that macrophages, a target cell of murine norovirus (MNV), increase glycolysis upon viral infection, which is important for early steps in MNV infection. Human noroviruses (hNoV) are a major cause of gastroenteritis globally, causing enormous morbidity and economic burden. Currently, no effective antivirals or vaccines exist for hNoV, mainly due to the lack of high-efficiency in vitro culture models for their study. Thus, insights gained from the MNV model may reveal aspects of host cell metabolism that can be targeted for improving hNoV cell culture systems and for developing effective antiviral therapies.


Assuntos
Glicólise , Interações Hospedeiro-Patógeno , Norovirus/fisiologia , Replicação Viral , Animais , Células CACO-2 , Infecções por Caliciviridae/virologia , Humanos , Macrófagos/virologia , Metabolômica , Camundongos , Fosforilação Oxidativa , Via de Pentose Fosfato , Células RAW 264.7
16.
J Biol Chem ; 294(11): 4259-4271, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30647130

RESUMO

Norovirus infections are a major cause of acute viral gastroenteritis and a significant burden on global human health. A vital process for norovirus replication is the processing of the nonstructural polyprotein by a viral protease into the viral components required to form the viral replication complex. This cleavage occurs at different rates, resulting in the accumulation of stable precursor forms. Here, we characterized how precursor forms of the norovirus protease accumulate during infection. Using stable forms of the protease precursors, we demonstrated that all of them are proteolytically active in vitro, but that when expressed in cells, their activities are determined by both substrate and protease localization. Although all precursors could cleave a replication complex-associated substrate, only a subset of precursors lacking the NS4 protein were capable of efficiently cleaving a cytoplasmic substrate. By mapping the full range of protein-protein interactions among murine and human norovirus proteins with the LUMIER assay, we uncovered conserved interactions between replication complex members that modify the localization of a protease precursor subset. Finally, we demonstrate that fusion to the membrane-bound replication complex components permits efficient cleavage of a fused substrate when active polyprotein-derived protease is provided in trans These findings offer a model for how norovirus can regulate the timing of substrate cleavage throughout the replication cycle. Because the norovirus protease represents a key target in antiviral therapies, an improved understanding of its function and regulation, as well as identification of interactions among the other nonstructural proteins, offers new avenues for antiviral drug design.


Assuntos
Norovirus/enzimologia , Norovirus/metabolismo , Peptídeo Hidrolases/metabolismo , Poliproteínas/metabolismo , Replicação Viral , Animais , Infecções por Caliciviridae/metabolismo , Infecções por Caliciviridae/virologia , Linhagem Celular , Células HeLa , Humanos , Camundongos , Norovirus/genética , Peptídeo Hidrolases/genética , Ligação Proteica , Replicação Viral/genética
17.
Nat Microbiol ; 4(2): 280-292, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30478287

RESUMO

Enteroviruses comprise a large group of mammalian pathogens that includes poliovirus. Pathology in humans ranges from sub-clinical to acute flaccid paralysis, myocarditis and meningitis. Until now, all of the enteroviral proteins were thought to derive from the proteolytic processing of a polyprotein encoded in a single open reading frame. Here we report that many enterovirus genomes also harbour an upstream open reading frame (uORF) that is subject to strong purifying selection. Using echovirus 7 and poliovirus 1, we confirmed the expression of uORF protein in infected cells. Through ribosome profiling (a technique for the global footprinting of translating ribosomes), we also demonstrated translation of the uORF in representative members of the predominant human enterovirus species, namely Enterovirus A, B and C. In differentiated human intestinal organoids, uORF protein-knockout echoviruses are attenuated compared to the wild-type at late stages of infection where membrane-associated uORF protein facilitates virus release. Thus, we have identified a previously unknown enterovirus protein that facilitates virus growth in gut epithelial cells-the site of initial viral invasion into susceptible hosts. These findings overturn the 50-year-old dogma that enteroviruses use a single-polyprotein gene expression strategy and have important implications for the understanding of enterovirus pathogenesis.


Assuntos
Infecções por Enterovirus/virologia , Enterovirus/genética , Enterovirus/patogenicidade , Mucosa Intestinal/virologia , Fases de Leitura Aberta/fisiologia , Proteínas Virais/metabolismo , Linhagem Celular , Membrana Celular/metabolismo , Enterovirus/classificação , Expressão Gênica , Técnicas de Inativação de Genes , Genoma Viral/genética , Humanos , Mutação , Fases de Leitura Aberta/genética , Organoides/virologia , Filogenia , Biossíntese de Proteínas , RNA Viral/genética , RNA Viral/metabolismo , Seleção Genética , Proteínas Virais/genética , Liberação de Vírus
18.
J Gen Virol ; 99(12): 1621-1632, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29683421

RESUMO

Until recently, our understanding of the cellular tropism of human norovirus (HuNoV), a major cause of viral gastroenteritis, has been limited. Immune cells and intestinal epithelial cells (IECs) have been proposed as targets of HuNoV replication in vivo, although the contribution of each to pathogenesis and transmission is unknown. Murine norovirus (MNV) is widely used as a surrogate model for HuNoV, as it replicates in cultured immune cells. The importance of the complete MNV immune cell tropism in vivo has not been determined. Recent work has linked replication in IECs to viral persistence in vivo. MNV provides a model to assess the relative contribution of each cell tropism to viral replication in immunocompetent native hosts. Here we exploited cell-specific microRNAs to control MNV replication, through insertion of microRNA target sequences into the MNV genome. We demonstrated the utility of this approach for MNV in vitro by selectively reducing replication in microglial cells, using microglial-specific miR-467c. We then showed that inserting a target sequence for the haematopoietic-specific miR-142-3p abrogated replication in a macrophage cell line. The presence of a target sequence for either miR-142-3p or IEC miR-215 significantly reduced viral secretion during the early stages of a persistent infection in immunocompetent mice, confirming that both cell types support viral replication in vivo. This study provides additional evidence that MNV shares the IEC tropism of HuNoVs in vivo, and now provides a model to dissect the contribution of replication in each cell type to viral pathogenesis and transmission in a native host.


Assuntos
Infecções por Caliciviridae/virologia , Células Epiteliais/virologia , Macrófagos/virologia , Norovirus/crescimento & desenvolvimento , Doenças dos Roedores/virologia , Tropismo Viral , Replicação Viral , Animais , Antivirais/metabolismo , Linhagem Celular , Transmissão de Doença Infecciosa , Camundongos , MicroRNAs/metabolismo
19.
Artigo em Inglês | MEDLINE | ID: mdl-29530860

RESUMO

Human norovirus (HuNoV) is a major cause of nonbacterial gastroenteritis worldwide, yet despite its impact on society, vaccines and antivirals are currently lacking. A HuNoV replicon system has been widely applied to the evaluation of antiviral compounds and has thus accelerated the process of drug discovery against HuNoV infection. Rupintrivir, an irreversible inhibitor of the human rhinovirus 3C protease, has been reported to inhibit the replication of the Norwalk virus replicon via the inhibition of the norovirus protease. Here we report, for the first time, the generation of rupintrivir-resistant human Norwalk virus replicon cells in vitro Sequence analysis revealed that these replicon cells contained amino acid substitutions of alanine 105 to valine (A105V) and isoleucine 109 to valine (I109V) in the viral protease NS6. The application of a cell-based fluorescence resonance energy transfer (FRET) assay for protease activity demonstrated that these substitutions were involved in the enhanced resistance to rupintrivir. Furthermore, we validated the effect of these mutations using reverse genetics in murine norovirus (MNV), demonstrating that a recombinant MNV strain with a single I109V substitution in the protease also showed reduced susceptibility to rupintrivir. In summary, using a combination of different approaches, we have demonstrated that, under the correct conditions, mutations in the norovirus protease that lead to the generation of resistant mutants can rapidly occur.


Assuntos
Antivirais/farmacologia , Isoxazóis/farmacologia , Vírus Norwalk/efeitos dos fármacos , Pirrolidinonas/farmacologia , Proteases Virais 3C , Sequência de Aminoácidos , Linhagem Celular Tumoral , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Transferência Ressonante de Energia de Fluorescência , Humanos , Mutação , Vírus Norwalk/genética , Fenilalanina/análogos & derivados , Valina/análogos & derivados , Proteínas Virais/genética , Proteínas Virais/metabolismo , Replicação Viral/efeitos dos fármacos , Replicação Viral/genética
20.
J Clin Virol ; 102: 19-26, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29477132

RESUMO

BACKGROUND: Human parainfluenza type 3 (HPIV3) is an important respiratory pathogen. Although a number of potential therapeutic candidates exist, there is currently no licensed therapy or vaccine. Ribavirin (RBV), favipiravir (FVP) and zanamivir (ZNV) are inhibitors with proven activity against influenza and with potential inhibitory activity against HPIV3 laboratory adapted strains in vitro. OBJECTIVES: To evaluate RBV, FVP and ZNV as inhibitors of minimally passaged UK clinical strains of HPIV3 as well as a laboratory adapted strain MK9 in vitro. STUDY DESIGN: The inhibitory action of RBV, FVP and ZNV was evaluated against nine minimally passaged clinical strains and a laboratory adapted strain MK9 using plaque reduction and growth curve inhibition in a cell culture model. RESULTS: Clinical isolates were found to be at least as susceptible as the laboratory adapted strains to RBV and FVP and significantly more susceptible to ZNV. However the inhibitory concentrations achieved by ZNV against clinical strains remain prohibitively high in vivo. CONCLUSIONS: RBV, FVP and ZNV were found to be effective inhibitors of HPIV3 in vitro. The lack of efficacy of RBV in vivo may be due to inability to reach required therapeutic levels. FVP, on the other hand, is a good potential therapeutic agent against HPIV3. Further studies using wild type clinical strains, as well as better formulation and delivery mechanisms may improve the utility of these three inhibitors.


Assuntos
Amidas/farmacologia , Antivirais/farmacologia , Vírus da Parainfluenza 3 Humana/efeitos dos fármacos , Pirazinas/farmacologia , Infecções por Respirovirus/virologia , Ribavirina/farmacologia , Zanamivir/farmacologia , Linhagem Celular Tumoral , Efeito Citopatogênico Viral/efeitos dos fármacos , Humanos , Vírus da Parainfluenza 3 Humana/fisiologia , Ligação Viral/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA