Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Integr Neurosci ; 21(4): 111, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35864763

RESUMO

Gliomas are common brain tumors with a variable prognosis based on their tumor grade. With glioblastomas, the prognosis is usually unfavorable. Thus, having accurate and rapid methods for their diagnosis and follow-up are essential for rapid discovery of the tumor and to protect patients from unnecessary procedures. Some glioma cases are challenging since there is a limited ability to differentiate between gliomas, recurrent glioblastomas, and single metastatic lesions. Monitoring treatment responses and follow-ups can also be challenging. While both radiological and serological markers have been identified that can aid diagnosis and assess therapies, a particularly promising new class of serological markers are long non-coding RNAs. Long non-coding RNAs are a relatively recently discovered class of regulatory RNA molecules that play critical roles in many cellular and physiological processes. The potential role that long non-coding RNAs play with glioma pathogenic processes is not fully understood. In this literature review, we highlight the potential for long non-coding RNAs to be used as serum biomarkers in glioblastoma patients, including their potential to serve as non-invasive, easy to use, and rapid diagnostic or prognostic indicators.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , RNA Longo não Codificante , Biomarcadores Tumorais , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Resistencia a Medicamentos Antineoplásicos , Glioblastoma/diagnóstico , Humanos , Prognóstico , RNA Longo não Codificante/genética
2.
World Neurosurg ; 138: 39-51, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32109640

RESUMO

OBJECTIVE: Simulation models enable trainees to master microsurgical skills before performing surgeries. Vascular bypass is a critical component of cerebrovascular and many nonneurologic procedures. However, most available bypass training models lack important spatial, tactile, and physiologic aspects of real surgery. Animal and placental models provide true physiology but are expensive. While some models adequately simulate superficial temporal artery-middle cerebral artery bypass, there is no model for side-to-side distal anterior cerebral artery bypass. The objective is to create a realistic and inexpensive training model for this important procedure. METHODS: The depth of interhemispheric fissures in cadaver brains was compared with the grapefruit radii. Grapefruits were dissected to simulate the operative field within the deep and narrow interhemispheric fissure. Pericallosal arteries were mimicked with chicken wing vessels or synthetic tubing, with an aquarium pump providing closed circulation. Twelve board-certified neurosurgeons who were given bypass training using the grapefruit model were blindly surveyed on model realism and training suitability. RESULTS: Grapefruit depths from pith to central column were comparable with interhemispheric cadaveric fissure depths. Approximate preparation time of grapefruit training models was 5-10 minutes. Surveyed neurosurgeons rated the model a better replicate for cerebral artery bypass (P < 0.02) and more challenging than common training models (P < 0.01). They also rated the grapefruit model as likely to be superior for improving surgical skills before surgery (P < 0.05). CONCLUSIONS: This grapefruit model provides a realistic simulation of side-to-side distal anterior cerebral artery bypass procedure that can be inexpensively and easily implemented in nearly any resource environment.


Assuntos
Artéria Cerebral Anterior/cirurgia , Revascularização Cerebral/educação , Citrus paradisi , Modelos Anatômicos , Neurocirurgia/educação , Humanos , Microcirurgia/educação
3.
J Neurosurg ; 132(5): 1529-1538, 2019 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-30952120

RESUMO

OBJECTIVE: In daily practice, neurosurgeons face increasing numbers of patients using aspirin (acetylsalicylic acid, ASA). While many of these patients discontinue ASA 7-10 days prior to elective intracranial surgery, there are limited data to support whether or not perioperative ASA use heightens the risk of hemorrhagic complications. In this study the authors retrospectively evaluated the safety of perioperative ASA use in patients undergoing craniotomy for brain tumors in the largest elective cranial surgery cohort reported to date. METHODS: The authors retrospectively analyzed the medical records of 1291 patients who underwent elective intracranial tumor surgery by a single surgeon from 2007 to 2017. The patients were divided into three groups based on their perioperative ASA status: 1) group 1, no ASA; 2) group 2, stopped ASA (low cardiovascular risk); and 3) group 3, continued ASA (high cardiovascular risk). Data collected included demographic information, perioperative ASA status, tumor characteristics, extent of resection (EOR), operative blood loss, any hemorrhagic and thromboembolic complications, and any other complications. RESULTS: A total of 1291 patients underwent 1346 operations. The no-ASA group included 1068 patients (1112 operations), the stopped-ASA group had 104 patients (108 operations), and the continued-ASA group had 119 patients (126 operations). The no-ASA patients were significantly younger (mean age 53.3 years) than those in the stopped- and continued-ASA groups (mean 64.8 and 64.0 years, respectively; p < 0.001). Sex distribution was similar across all groups (p = 0.272). Tumor locations and pathologies were also similar across the groups, except for deep tumors and schwannomas that were relatively less frequent in the continued-ASA group. There were no differences in the EOR between groups. Operative blood loss was not significantly different between the stopped- (186 ml) and continued- (220 ml) ASA groups (p = 0.183). Most importantly, neither hemorrhagic (0.6%, 0.9%, and 0.8%, respectively; p = 0.921) nor thromboembolic (1.3%, 1.9%, and 0.8%; p = 0.779) complication rates were significantly different between the groups, respectively. In addition, the multivariate model revealed no statistically significant predictor of hemorrhagic complications, whereas male sex (odds ratio [OR] 5.9, 95% confidence interval [CI] 1.7-20.5, p = 0.005) and deep-extraaxial-benign ("skull base") tumors (OR 3.6, 95% CI 1.3-9.7, p = 0.011) were found to be independent predictors of thromboembolic complications. CONCLUSIONS: In this cohort, perioperative ASA use was not associated with the increased rate of hemorrhagic complications following intracranial tumor surgery. In patients at high cardiovascular risk, ASA can safely be continued during elective brain tumor surgery to prevent potential life-threatening thromboembolic complications. Randomized clinical trials with larger sample sizes are warranted to achieve a greater statistical power.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA