Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Nat Genet ; 55(2): 255-267, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36624343

RESUMO

Endometriosis is a common condition in women that causes chronic pain and infertility and is associated with an elevated risk of ovarian cancer. We profiled transcriptomes of >370,000 individual cells from endometriomas (n = 8), endometriosis (n = 28), eutopic endometrium (n = 10), unaffected ovary (n = 4) and endometriosis-free peritoneum (n = 4), generating a cellular atlas of endometrial-type epithelial cells, stromal cells and microenvironmental cell populations across tissue sites. Cellular and molecular signatures of endometrial-type epithelium and stroma differed across tissue types, suggesting a role for cellular restructuring and transcriptional reprogramming in the disease. Epithelium, stroma and proximal mesothelial cells of endometriomas showed dysregulation of pro-inflammatory pathways and upregulation of complement proteins. Somatic ARID1A mutation in epithelial cells was associated with upregulation of pro-angiogenic and pro-lymphangiogenic factors and remodeling of the endothelial cell compartment, with enrichment of lymphatic endothelial cells. Finally, signatures of ciliated epithelial cells were enriched in ovarian cancers, reinforcing epidemiologic associations between these two diseases.


Assuntos
Endometriose , Transcriptoma , Humanos , Feminino , Transcriptoma/genética , Endometriose/genética , Endometriose/metabolismo , Células Endoteliais/metabolismo , Células Epiteliais/metabolismo , Epitélio
2.
Nat Commun ; 13(1): 7243, 2022 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-36433954

RESUMO

Exonic circular RNAs (circRNAs) produce predominantly non-coding RNA species that have been recently profiled in many tumors. However, their functional contribution to cancer progression is still poorly understood. Here, we identify the circRNAs expressed in soft tissue sarcoma cells and explore how the circRNAs regulate sarcoma growth in vivo. We show that circCsnk1g3 and circAnkib1 promote tumor growth by shaping a pro-tumorigenic microenvironment, possibly due to their capabilities to regulate tumor-promoting elements extrinsic to the tumor cells. Accordingly, circCsnk1g3 and circAnkib1 can control the expression of interferon-related genes and pro-inflammatory factors in the sarcoma cells, thus directing immune cell recruitment into the tumor mass, and hence their activation. Mechanistically, circRNAs may repress pro-inflammatory elements by buffering activation of the pathways mediated by RIG-I, the cytosolic viral RNA sensor. The current findings suggest that the targeting of specific circRNAs could augment the efficacy of tumor and immune response to mainstay therapies.


Assuntos
Carcinogênese , Interferons , RNA Circular , Sarcoma , Neoplasias de Tecidos Moles , Microambiente Tumoral , Humanos , Carcinogênese/genética , Carcinogênese/imunologia , Interferons/genética , Interferons/imunologia , RNA Circular/genética , RNA Circular/imunologia , Sarcoma/genética , Sarcoma/imunologia , Neoplasias de Tecidos Moles/genética , Neoplasias de Tecidos Moles/imunologia , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Caseína Quinase I/genética , Caseína Quinase I/imunologia
3.
Aging Cell ; 21(10): e13701, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36040389

RESUMO

Aging is associated with increased monocyte production and altered monocyte function. Classical monocytes are heterogenous and a shift in their subset composition may underlie some of their apparent functional changes during aging. We have previously shown that mouse granulocyte-monocyte progenitors (GMPs) produce "neutrophil-like" monocytes (NeuMo), whereas monocyte-dendritic cell progenitors (MDPs) produce monocyte-derived dendritic cell (moDC)-producing monocytes (DCMo). Here, we demonstrate that classical monocytes from the bone marrow of old male and female mice have higher expression of DCMo signature genes (H2-Aa, H2-Ab1, H2-Eb1, Cd74), and that more classical monocytes express MHCII and CD74 protein. Moreover, we show that bone marrow MDPs and classical monocytes from old mice yield more moDC. We also demonstrate higher expression of Aw112010 in old monocytes and that Aw112010 lncRNA activity regulates MHCII induction in macrophages, which suggests that elevated Aw112010 levels may underlie increased MHCII expression during monocyte aging. Finally, we show that classical monocyte expression of MHCII is also elevated during healthy aging in humans. Thus, aging-associated changes in monocyte production may underlie altered monocyte function and have implications for aging-associated disorders.


Assuntos
Monócitos , RNA Longo não Codificante , Animais , Feminino , Humanos , Masculino , Camundongos , Diferenciação Celular , Células Dendríticas , Macrófagos , Monócitos/metabolismo , RNA Longo não Codificante/metabolismo , Antígenos de Histocompatibilidade Classe II
4.
Cell Rep ; 39(12): 110977, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35732118

RESUMO

The standard of care is unsuccessful to treat recurrent and aggressive soft-tissue sarcomas. Interventions aimed at targeting components of the tumor microenvironment have shown promise for many solid tumors yet have been only marginally tested for sarcoma, partly because knowledge of the sarcoma microenvironment composition is limited. We employ single-cell RNA sequencing to characterize the immune composition of an undifferentiated pleiomorphic sarcoma mouse model, showing that macrophages in the sarcoma mass exhibit distinct activation states. Sarcoma cells use the pleiotropic cytokine macrophage migration inhibitory factor (MIF) to interact with macrophages expressing the CD74 receptor to switch macrophages' activation state and pro-tumorigenic potential. Blocking the expression of MIF in sarcoma cells favors the accumulation of macrophages with inflammatory and antigen-presenting profiles, hence reducing tumor growth. These data may pave the way for testing new therapies aimed at re-shaping the sarcoma microenvironment, in combination with the standard of care.


Assuntos
Oxirredutases Intramoleculares/metabolismo , Fatores Inibidores da Migração de Macrófagos/metabolismo , Sarcoma , Neoplasias de Tecidos Moles , Animais , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/metabolismo , Fatores Inibidores da Migração de Macrófagos/genética , Camundongos , RNA-Seq , Sarcoma/genética , Microambiente Tumoral
5.
Stem Cells ; 40(1): 14-21, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35511863

RESUMO

Balanced production of immune cells is critical for the maintenance of steady-state immune surveillance, and increased production of myeloid cells is sometimes necessary to eliminate pathogens. Hematopoietic stem and progenitor cell (HSPC) sensing of commensal microbes and invading pathogens has a notable impact on hematopoiesis. In this review, we examine how commensal microbes regulate bone marrow HSPC activity to maintain balanced hematopoiesis in the steady state, and how HSPCs proliferate and differentiate during emergency myelopoiesis in response to infection. HSPCs express a variety of pattern recognition receptors and cytokine receptors that they use to sense the presence of microbes, either directly via detection of microbial components and metabolites, or indirectly by responding to cytokines produced by other host cells. We describe direct and indirect mechanisms of microbial sensing by HSPCs and highlight evidence demonstrating long-term effects of acute and chronic microbial stimuli on HSPCs. We also discuss a possible connection between myeloid-biased hematopoiesis and elevated levels of circulating microbiome-derived components in the context of aging and metabolic stress. Finally, we highlight the prospect of trained immunity-based vaccines that could exploit microbial stimulation of HSPCs.


Assuntos
Hematopoese , Células-Tronco Hematopoéticas , Citocinas/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Células Mieloides/metabolismo
6.
J Exp Med ; 219(6)2022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35522219

RESUMO

Neutrophils are the first responders to infection and inflammation and are thus a critical component of innate immune defense. Understanding the behavior of neutrophils as they act within various inflammatory contexts has provided insights into their role in sterile and infectious diseases; however, the field of neutrophils in cancer is comparatively young. Here, we summarize key concepts and current knowledge gaps related to the diverse roles of neutrophils throughout cancer progression. We discuss sources of neutrophil heterogeneity in cancer and provide recommendations on nomenclature for neutrophil states that are distinct in maturation and activation. We address discrepancies in the literature that highlight a need for technical standards that ought to be considered between laboratories. Finally, we review emerging questions in neutrophil biology and innate immunity in cancer. Overall, we emphasize that neutrophils are a more diverse population than previously appreciated and that their role in cancer may present novel unexplored opportunities to treat cancer.


Assuntos
Neoplasias , Neutrófilos , Humanos , Imunidade Inata , Inflamação , Neoplasias/genética , Fenótipo
7.
Curr Opin Hematol ; 29(4): 201-208, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35285448

RESUMO

PURPOSE OF REVIEW: Myeloid cells - granulocytes, monocytes, macrophages and dendritic cells (DCs) - are innate immune cells that play key roles in pathogen defense and inflammation, as well as in tissue homeostasis and repair. Over the past 5 years, in part due to more widespread use of single cell omics technologies, it has become evident that these cell types are significantly more heterogeneous than was previously appreciated. In this review, we consider recent studies that have demonstrated heterogeneity among neutrophils, monocytes, macrophages and DCs in mice and humans. We also discuss studies that have revealed the sources of their heterogeneity. RECENT FINDINGS: Recent studies have confirmed that ontogeny is a key determinant of diversity, with specific subsets of myeloid cells arising from distinct progenitors. However, diverse microenvironmental cues also strongly influence myeloid fate and function. Accumulating evidence therefore suggests that a combination of these mechanisms underlies myeloid cell diversity. SUMMARY: Consideration of the heterogeneity of myeloid cells is critical for understanding their diverse activities, such as the role of macrophages in tissue damage versus repair, or tumor growth versus elimination. Insights into these mechanisms are informing the design of novel therapeutic approaches.


Assuntos
Monócitos , Células Mieloides , Animais , Células Dendríticas , Granulócitos , Humanos , Inflamação , Macrófagos , Camundongos
8.
Cells ; 9(5)2020 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-32466296

RESUMO

Microbial recognition by pattern recognition receptors (PRRs) expressed on hematopoietic stem and progenitor cells (HSPCs) not only activates myelopoiesis but also programs the function of the monocytes and macrophages they produce. For instance, changes in HSPC programming modify the ability of macrophages derived from them to produce inflammatory cytokines. While HSPCs exposed to a TLR2 agonist give rise to tolerized macrophages (lower proinflammatory cytokine production), HSPCs treated with Dectin-1 ligands produce trained macrophages (higher proinflammatory cytokine production). However, nothing is known about the impact of HSPC exposure to microbes on the function of antigen presenting cells (APCs). In this study we evaluated whether treatment of murine bone marrow HSPCs with a TLR2 or Dectin-1 ligand impacts the antigen presenting capacity of APCs derived from them in vitro. Following activation with microbial ligands or Candida albicans yeasts, APCs derived from TLR2/Dectin-1-programed HSPCs exhibit altered expression of MHCII (signal 1), co-stimulatory molecules (CD40, CD80 and CD86; signal 2) and cytokines (TNF-α, IL-6, IL-12 p40 and IL-2; signal 3). Moreover, APCs derived from TLR2/Dectin-1-programed HSPCs prime enhanced Th1 and Th17 responses, which are important for antifungal defense, in CD4 T cell cocultures. Overall, these results demonstrate for the first time that microbial detection by bone marrow HSPCs can modulate the adaptive immune response by inducing the production of APCs with an altered phenotype.


Assuntos
Células Apresentadoras de Antígenos/metabolismo , Linfócitos T CD4-Positivos/imunologia , Células-Tronco Hematopoéticas/metabolismo , Lectinas Tipo C/metabolismo , Ativação Linfocitária/imunologia , Transdução de Sinais , Receptor 2 Toll-Like/metabolismo , Animais , Células Apresentadoras de Antígenos/efeitos dos fármacos , Linfócitos T CD4-Positivos/efeitos dos fármacos , Candida albicans/imunologia , Citocinas/metabolismo , Células-Tronco Hematopoéticas/efeitos dos fármacos , Antígenos de Histocompatibilidade Classe II/metabolismo , Lipopeptídeos/farmacologia , Ativação Linfocitária/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Ovalbumina/imunologia , Transdução de Sinais/efeitos dos fármacos , Células Th1/efeitos dos fármacos , Células Th1/imunologia , Células Th17/efeitos dos fármacos , Células Th17/imunologia , Zimosan/farmacologia
10.
Front Immunol ; 10: 1642, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31379841

RESUMO

Classical and non-classical monocytes, and the macrophages and monocyte-derived dendritic cells they produce, play key roles in host defense against pathogens, immune regulation, tissue repair and many other processes throughout the body. Recent studies have revealed previously unappreciated heterogeneity among monocytes that may explain this functional diversity, but our understanding of mechanisms controlling the functional programming of distinct monocyte subsets remains incomplete. Resolving monocyte heterogeneity and understanding how their functional identity is determined holds great promise for therapeutic immune modulation. In this review, we examine how monocyte origins and developmental influences shape the phenotypic and functional characteristics of monocyte subsets during homeostasis and in the context of infection, inflammation, and cancer. We consider how extrinsic signals and transcriptional regulators impact monocyte production and functional programming, as well as the influence of epigenetic and metabolic mechanisms. We also examine the evidence that functionally distinct monocyte subsets are produced via different developmental pathways during homeostasis and that inflammatory stimuli differentially target progenitors during an emergency response. We highlight the need for a more comprehensive understanding of the relationship between monocyte ontogeny and heterogeneity, including multiparametric single-cell profiling and functional analyses. Studies defining mechanisms of monocyte subset production and maintenance of unique monocyte identities have the potential to facilitate the design of therapeutic interventions to target specific monocyte subsets in a variety of disease contexts, including infectious and inflammatory diseases, cancer, and aging.


Assuntos
Monócitos/imunologia , Animais , Células Dendríticas/imunologia , Ontologia Genética , Humanos , Inflamação/imunologia , Macrófagos/imunologia
11.
Commun Biol ; 2: 73, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30820468

RESUMO

Restoration of cognitive function in old mice by transfer of blood or plasma from young mice has been attributed to reduced C-C motif chemokine ligand 11 (CCL11) and ß2-microglobulin, which are thought to suppress neurogenesis in the aging brain. However, the specific role of the hematopoietic system in this rejuvenation has not been defined and the importance of neurogenesis in old mice is unclear. Here we report that transplantation of young bone marrow to rejuvenate the hematopoietic system preserved cognitive function in old recipient mice, despite irradiation-induced suppression of neurogenesis, and without reducing ß2-microglobulin. Instead, young bone marrow transplantation preserved synaptic connections and reduced microglial activation in the hippocampus. Circulating CCL11 levels were lower in young bone marrow recipients, and CCL11 administration in young mice had the opposite effect, reducing synapses and increasing microglial activation. In conclusion, young blood or bone marrow may represent a future therapeutic strategy for neurodegenerative disease.


Assuntos
Envelhecimento/fisiologia , Transplante de Medula Óssea/métodos , Cognição/fisiologia , Aprendizagem/fisiologia , Memória/fisiologia , Rejuvenescimento/fisiologia , Fatores Etários , Animais , Quimiocina CCL11/sangue , Hipocampo/citologia , Hipocampo/fisiologia , Masculino , Camundongos Congênicos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurogênese/fisiologia , Microglobulina beta-2/metabolismo
12.
J Vis Exp ; (137)2018 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-30102291

RESUMO

Myeloid progenitors that yield neutrophils, monocytes and dendritic cells (DCs) can be identified in and isolated from the bone marrow of mice for hematological and immunological analyses. For example, studies of the cellular and molecular properties of myeloid progenitor populations can reveal mechanisms underlying leukemic transformation, or demonstrate how the immune system responds to pathogen exposure. Previously described flow cytometry strategies for myeloid progenitor identification have enabled significant advances in many fields, but the fractions they identify are very heterogeneous. The most commonly used gating strategies define bone marrow fractions that are enriched for the desired populations, but also contain large numbers of "contaminating" progenitors. Our recent studies have resolved much of this heterogeneity, and the protocol we present here permits the isolation of 6 subpopulations of oligopotent and lineage-committed myeloid progenitors from 2 previously described bone marrow fractions. The protocol describes 3 stages: 1) isolation of bone marrow cells, 2) enrichment for hematopoietic progenitors by magnetic-activated cell sorting (lineage depletion by MACS), and 3) identification of myeloid progenitor subsets by flow cytometry (including fluorescence-activated cell sorting, FACS, if desired). This approach permits progenitor quantification and isolation for a variety of in vitro and in vivo applications, and has already yielded novel insight into pathways and mechanisms of neutrophil, monocyte, and DC differentiation.


Assuntos
Medula Óssea/metabolismo , Células Progenitoras Mieloides/metabolismo , Animais , Diferenciação Celular , Citometria de Fluxo , Camundongos
13.
Immunity ; 48(6): 1065-1067, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29924968

RESUMO

Mast cells have been thought to derive from bone marrow hematopoietic stem cells. In this issue of Immunity, Gentek et al. (2018) reveal that mast cells have dual developmental origins in primitive and definitive hematopoiesis and that adult mast cell maintenance is largely bone marrow independent.


Assuntos
Células-Tronco Hematopoéticas , Mastócitos , Adulto , Medula Óssea , Células da Medula Óssea , Hematopoese , Humanos
14.
Front Immunol ; 9: 2925, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30619287

RESUMO

An array of phenotypically diverse myeloid cells and macrophages (MC&M) resides in the tumor microenvironment, requiring multiplexed detection systems for visualization. Here we report an automated, multiplexed staining approach, named PLEXODY, that consists of five MC&M-related fluorescently-tagged antibodies (anti - CD68, - CD163, - CD206, - CD11b, and - CD11c), and three chromogenic antibodies, reactive with high- and low-molecular weight cytokeratins and CD3, highlighting tumor regions, benign glands and T cells. The staining prototype and image analysis methods which include a pixel/area-based quantification were developed using tissues from inflamed colon and tonsil and revealed a unique tissue-specific composition of 14 MC&M-associated pixel classes. As a proof-of-principle, PLEXODY was applied to three cases of pancreatic, prostate and renal cancers. Across digital images from these cancer types we observed 10 MC&M-associated pixel classes at frequencies greater than 3%. Cases revealed higher frequencies of single positive compared to multi-color pixels and a high abundance of CD68+/CD163+ and CD68+/CD163+/CD206+ pixels. Significantly more CD68+ and CD163+ vs. CD11b+ and CD11c+ pixels were in direct contact with tumor cells and T cells. While the greatest percentage (~70%) of CD68+ and CD163+ pixels was 0-20 microns away from tumor and T cell borders, CD11b+ and CD11c+ pixels were detected up to 240 microns away from tumor/T cell masks. Together, these data demonstrate significant differences in densities and spatial organization of MC&M-associated pixel classes, but surprising similarities between the three cancer types.


Assuntos
Macrófagos/imunologia , Células Mieloides/imunologia , Coloração e Rotulagem/métodos , Microambiente Tumoral/imunologia , Antígenos CD/imunologia , Antígenos CD/metabolismo , Humanos , Imuno-Histoquímica/métodos , Neoplasias Renais/diagnóstico , Neoplasias Renais/imunologia , Neoplasias Renais/metabolismo , Macrófagos/metabolismo , Masculino , Células Mieloides/metabolismo , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/metabolismo , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/metabolismo , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Linfócitos T/imunologia , Linfócitos T/metabolismo
15.
J Immunol ; 200(1): 260-270, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29167231

RESUMO

The ability of macrophages to respond to chemoattractants and inflammatory signals is important for their migration to sites of inflammation and immune activity and for host responses to infection. Macrophages differentiated from the bone marrow (BM) of UV-irradiated mice, even after activation with LPS, migrated inefficiently toward CSF-1 and CCL2. When BM cells were harvested from UV-irradiated mice and transplanted into naive mice, the recipient mice (UV-chimeric) had reduced accumulation of elicited monocytes/macrophages in the peritoneal cavity in response to inflammatory thioglycollate or alum. Macrophages differentiating from the BM of UV-chimeric mice also had an inherent reduced ability to migrate toward chemoattractants in vitro, even after LPS activation. Microarray analysis identified reduced reticulon-1 mRNA expressed in macrophages differentiated from the BM of UV-chimeric mice. By using an anti-reticulon-1 Ab, a role for reticulon-1 in macrophage migration toward both CSF-1 and CCL2 was confirmed. Reticulon-1 subcellular localization to the periphery after exposure to CSF-1 for 2.5 min was shown by immunofluorescence microscopy. The proposal that reduced reticulon-1 is responsible for the poor inherent ability of macrophages to respond to chemokine gradients was supported by Western blotting. In summary, skin exposure to erythemal UV radiation can modulate macrophage progenitors in the BM such that their differentiated progeny respond inefficiently to signals to accumulate at sites of inflammation and immunity.


Assuntos
Células da Medula Óssea/fisiologia , Macrófagos/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Animais , Anticorpos Bloqueadores/metabolismo , Diferenciação Celular , Movimento Celular/genética , Células Cultivadas , Quimiocina CCL2/metabolismo , Feminino , Lipopolissacarídeos/imunologia , Fator Estimulador de Colônias de Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/genética , Quimera por Radiação , Análise Serial de Tecidos , Raios Ultravioleta/efeitos adversos
16.
Exp Hematol ; 56: 64-68, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28822771

RESUMO

Monocytes/macrophages differentiating from bone marrow (BM) cells pulsed for 2 hours at 37°C with a stabilized derivative of prostaglandin E2, 16,16-dimethyl PGE2 (dmPGE2), migrated less efficiently toward a chemoattractant than monocytes/macrophages differentiated from BM cells pulsed with vehicle. To confirm that the effect on BM cells was long lasting and to replicate human BM transplantation, chimeric mice were established with donor BM cells pulsed for 2 hours with dmPGE2 before injection into marrow-ablated congenic recipient mice. After 12 weeks, when high levels (90%) of engraftment were obtained, regenerated BM-derived monocytes/macrophages differentiating in vitro or in vivo migrated inefficiently toward the chemokines colony-stimulating factor-1 (CSF-1) and chemokine (C-C motif) ligand 2 (CCL2) or thioglycollate, respectively. Our results reveal long-lasting changes to progenitor cells of monocytes/macrophages by a 2-hour dmPGE2 pulse that, in turn, limits the migration of their daughter cells to chemoattractants and inflammatory mediators.


Assuntos
Células da Medula Óssea/metabolismo , Movimento Celular/efeitos dos fármacos , Dinoprostona/farmacologia , Macrófagos/metabolismo , Monócitos/metabolismo , 16,16-Dimetilprostaglandina E2/farmacologia , Animais , Células da Medula Óssea/citologia , Quimiocina CCL2/metabolismo , Fator Estimulador de Colônias de Macrófagos/metabolismo , Macrófagos/citologia , Camundongos , Monócitos/citologia
18.
Am J Pathol ; 187(9): 2046-2059, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28708972

RESUMO

A systemic immunosuppression follows UV irradiation of the skin of humans and mice. In this study, dendritic cells (DCs) differentiating from the bone marrow (BM) of UV-irradiated mice had a reduced ability to migrate toward the chemokine (C-C motif) ligand 21. Fewer DCs also accumulated in the peritoneal cavity of UV-chimeric mice (ie, mice transplanted with BM from UV-irradiated mice) after injection of an inflammatory stimulus into that site. We hypothesized that different metabolic states underpin altered DC motility. Compared with DCs from the BM of nonirradiated mice, those from UV-irradiated mice produced more lactate, consumed more glucose, and had greater glycolytic flux in a bioenergetics stress test. Greater expression of 3-hydroxyanthranilate 3,4-dioxygenase was identified as a potential contributor to increased glycolysis. Inhibition of 3-hydroxyanthranilate 3,4-dioxygenase by 6-chloro-dl-tryptophan prevented both increased lactate production and reduced migration toward chemokine (C-C motif) ligand 21 by DCs differentiated from BM of UV-irradiated mice. UV-induced prostaglandin E2 has been implicated as an intermediary in the effects of UV radiation on BM cells. DCs differentiating from BM cells pulsed in vitro for 2 hours with dimethyl prostaglandin E2 were functionally similar to those from the BM of UV-irradiated mice. Reduced migration of DCs to lymph nodes associated with increased glycolytic flux may contribute to their reduced ability to initiate new immune responses in UV-irradiated mice.


Assuntos
Células da Medula Óssea/citologia , Movimento Celular/efeitos da radiação , Células Dendríticas/citologia , Glicólise/fisiologia , Pele/efeitos da radiação , Raios Ultravioleta , Animais , Células da Medula Óssea/metabolismo , Células Dendríticas/metabolismo , Dinoprostona/metabolismo , Glucose/metabolismo , Ácido Láctico/metabolismo , Camundongos , Pele/metabolismo
19.
J Immunol ; 198(1): 375-382, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27872213

RESUMO

Type I IFNs are key mediators of immune defense against viruses and bacteria. Type I IFNs were also previously implicated in protection against fungal infection, but their roles in antifungal immunity have not been thoroughly investigated. A recent study demonstrated that bacterial and fungal ß-glucans stimulate IFN-ß production by dendritic cells (DCs) following detection by the Dectin-1 receptor, but the effects of ß-glucan-induced type I IFNs have not been defined. We investigated whether type I IFNs regulate CD8 T cell activation by fungal ß-glucan particle-stimulated DCs. We demonstrate that ß-glucan-stimulated DCs induce CD8 T cell proliferation, activation marker (CD44 and CD69) expression, and production of IFN-γ, IL-2, and granzyme B. Moreover, we show that type I IFNs support robust CD8 T cell activation (proliferation and IFN-γ and granzyme B production) by ß-glucan-stimulated DCs in vitro and in vivo due to autocrine effects on the DCs. Specifically, type I IFNs promote Ag presentation on MHC I molecules, CD86 and CD40 expression, and the production of IL-12 p70, IL-2, IL-6, and TNF-α by ß-glucan-stimulated DCs. We also demonstrate a role for autocrine type I IFN signaling in bacterial LPS-induced DC maturation, although, in the context of LPS stimulation, this mechanism is not so critical for CD8 T cell activation (promotes IFN-γ production but not proliferation or granzyme B production). This study provides insight into the mechanisms underlying CD8 T cell activation during infection, which may be useful in the rational design of vaccines directed against pathogens and tumors.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , Interferon Tipo I/imunologia , Ativação Linfocitária/imunologia , Animais , Comunicação Autócrina , Western Blotting , Técnicas de Cocultura , Citometria de Fluxo , Proteínas Fúngicas/imunologia , Lipopolissacarídeos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais/imunologia , beta-Glucanas/imunologia
20.
Microbes Infect ; 18(5): 354-63, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26828664

RESUMO

TLRs represent an attractive target for the stimulation of myeloid cell production by HSPCs. We have previously demonstrated that HSPCs use TLR2 to sense Candida albicans in vivo and induce the production of macrophages. In this work, we used an in vitro model of HSPCs differentiation to investigate the functional consequences for macrophages of exposure of HSPCs to various PAMPs and C. albicans cells. Mouse HSPCs (Lin(-) cells) were cultured with M-CSF to induce macrophage differentiation, in the presence or absence of the following PRR agonists: Pam3CSK4 (TLR2 ligand), LPS (TLR4 ligand), depleted zymosan (which only activates Dectin-1), or C. albicans yeasts (which activate several PRRs, but principally TLR2 and Dectin-1). Our data show that these PAMPs differentially impact the anti-microbial function of the macrophages produced by the exposed HSPCs. Pure TLR2 and TLR4 ligands generate macrophages with a diminished ability to produce inflammatory cytokines. In contrast, HSPCs activation in response to C. albicans leads to the generation of macrophages that are better prepared to deal with the infection, as they produce higher amounts of inflammatory cytokines and have higher fungicidal capacity than control macrophages. Therefore, the tailored manipulation of the differentiation process may help to boost the innate immune response to infection.


Assuntos
Candida albicans/imunologia , Células-Tronco Hematopoéticas/fisiologia , Lectinas Tipo C/metabolismo , Macrófagos/imunologia , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo , Animais , Diferenciação Celular , Feminino , Lipopeptídeos/imunologia , Lipopolissacarídeos/imunologia , Fator Estimulador de Colônias de Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Zimosan/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA