Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37510651

RESUMO

Surgeons are highly exposed to work-related musculoskeletal disorders (WMSDs). The objective of this review was to summarize the WMSD prevalence by body area with and without assistive devices. The underlying question was whether there is an effect of assistive device use (robot, video, or other) during surgery on WMSD prevalence by body area among surgeons, regardless of their specialty. The systematic review was conducted according to the PRISMA guidelines. The Google Scholar, Pubmed/Medline, and ScienceDirect databases were scanned to identify relevant studies. The article selection, review, critical appraisal, and data extraction were performed by two authors independently. Among the 34,854 unique identified records, 77 studies were included. They were divided into two groups: 35 focused on robotic- and video-assisted surgery (RVAS) and 48 concerning surgery without video/robotic assistance (WAS) (6 studies evaluated the prevalence for both groups). WMSD prevalence was reported for 13 body areas: the neck, back, upper back, mid-back, lower back, shoulders, elbows, wrists, fingers, thumbs, hips, knees, and ankles. The results showed that WMSD prevalence was significantly higher (unpaired t-test, p < 0.05) for RVAS in the shoulders (WAS: 28.3% vs. RVAS: 41.9%), wrists (WAS: 20.9% vs. RVAS: 31.5%), and thumbs (WAS: 9.9% vs. RVAS: 21.8%). A meta-analysis was performed for 10 body areas (with 4 areas including more than 25 studies). No sufficient data were available for the mid-back, thumbs, or hips. A high heterogeneity (Cochran's Q test and I2 statistic) was observed. A random-effects model revealed that the highest worldwide prevalence was in the neck (WAS: 41% and RVAS: 45.3%), back (WAS: 37.7% and RVAS: 49.9%), lower back (WAS: 40.0% and RVAS: 37.8%), and shoulders (WAS: 27.3% and RVAS: 41.4%). Future work could focus on work environment design, particularly the positioning and adjustment of equipment, and on postural analysis to reduce the appearance of WMSDs. Recommendations are proposed for future reviews and meta-analyses.


Assuntos
Doenças Musculoesqueléticas , Doenças Profissionais , Cirurgiões , Humanos , Prevalência , Doenças Profissionais/epidemiologia , Doenças Musculoesqueléticas/epidemiologia , Doenças Musculoesqueléticas/etiologia , Dorso , Fatores de Risco
2.
Sensors (Basel) ; 23(3)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36772729

RESUMO

(1) Background: Surgeons are exposed to musculoskeletal loads that are comparable to those of industrial workers. These stresses are harmful for the joints and muscles and can lead to musculoskeletal disorders (MSD) and working incapacity for surgeons. In this paper, we propose a novel ergonomic and visualization approach to assess muscular fatigue during surgical procedures. (2) Methods: The activity of eight muscles from the shoulder girdle and the cervical/lumbar spines were evaluated using position and electromyographic wearable sensors while a surgeon performed an arthroscopic rotator-cuff surgery on a patient. The time and frequency-domain variables of the root-mean-square amplitude and mean power frequency, respectively, were calculated from an electromyographic signal. (3) Results: The entire surgical procedure lasted 73 min and was divided into 10 sub-phases associated with specific level of muscular activity and fatigue. Most of the muscles showed activity above 60%, while the middle trapezius muscles were almost constantly activated (>20%) throughout the surgical procedure. (4) Conclusion: Wearable sensors can be used during surgical procedure to assess fatigue. Periods of low-to-high activity and fatigue can be evaluated and visualized during surgery. Micro-breaks throughout surgical procedures are suggested to avoid fatigue and to prevent the risk of developing MSD.


Assuntos
Doenças Musculoesqueléticas , Dispositivos Eletrônicos Vestíveis , Humanos , Fadiga Muscular/fisiologia , Músculo Esquelético/fisiologia , Eletromiografia , Ergonomia , Fadiga
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA