Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nature ; 591(7851): 639-644, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33461210

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected 78 million individuals and is responsible for over 1.7 million deaths to date. Infection is associated with the development of variable levels of antibodies with neutralizing activity, which can protect against infection in animal models1,2. Antibody levels decrease with time, but, to our knowledge, the nature and quality of the memory B cells that would be required to produce antibodies upon reinfection has not been examined. Here we report on the humoral memory response in a cohort of 87 individuals assessed at 1.3 and 6.2 months after infection with SARS-CoV-2. We find that titres of IgM and IgG antibodies against the receptor-binding domain (RBD) of the spike protein of SARS-CoV-2 decrease significantly over this time period, with IgA being less affected. Concurrently, neutralizing activity in plasma decreases by fivefold in pseudotype virus assays. By contrast, the number of RBD-specific memory B cells remains unchanged at 6.2 months after infection. Memory B cells display clonal turnover after 6.2 months, and the antibodies that they express have greater somatic hypermutation, resistance to RBD mutations and increased potency, indicative of continued evolution of the humoral response. Immunofluorescence and PCR analyses of intestinal biopsies obtained from asymptomatic individuals at 4 months after the onset of coronavirus disease 2019 (COVID-19) revealed the persistence of SARS-CoV-2 nucleic acids and immunoreactivity in the small bowel of 7 out of 14 individuals. We conclude that the memory B cell response to SARS-CoV-2 evolves between 1.3 and 6.2 months after infection in a manner that is consistent with antigen persistence.


Assuntos
Anticorpos Antivirais/imunologia , COVID-19/imunologia , Imunidade Humoral/imunologia , SARS-CoV-2/imunologia , Adolescente , Adulto , Idoso , Anticorpos Monoclonais/sangue , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/genética , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/genética , Antígenos Virais/química , Antígenos Virais/genética , Antígenos Virais/imunologia , Linfócitos B/citologia , Linfócitos B/imunologia , Biópsia , COVID-19/sangue , Estudos de Coortes , Imunofluorescência , Humanos , Imunidade Humoral/genética , Imunoglobulina A/imunologia , Imunoglobulina G/imunologia , Imunoglobulina M/imunologia , Memória Imunológica/imunologia , Intestinos/imunologia , Pessoa de Meia-Idade , Mutação , Hipermutação Somática de Imunoglobulina , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Fatores de Tempo , Adulto Jovem
2.
Mol Biol Cell ; 15(8): 3688-97, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15181154

RESUMO

Our previous studies demonstrated that fluorescent early endocytic vesicles prepared from rat liver after injection of Texas red asialoorosomucoid contain asialoglycoprotein and its receptor and move and undergo fission along microtubules using kinesin I and KIFC2, with Rab4 regulating KIFC2 activity (J. Cell Sci. 116, 2749, 2003). In the current study, procedures to prepare fluorescent late endocytic vesicles were devised. In addition, flow cytometry was utilized to prepare highly purified fluorescent endocytic vesicles, permitting validation of microscopy-based experiments as well as direct biochemical analysis. These studies revealed that late vesicles bound to and moved along microtubules, but in contrast to early vesicles, did not undergo fission. As compared with early vesicles, late vesicles had reduced association with receptor, Rab4, and kinesin I but were highly associated with dynein, Rab7, dynactin, and KIF3A. Dynein and KIF3A antibodies inhibited late vesicle motility, whereas kinesin I and KIFC2 antibodies had no effect. Dynamitin antibodies prevented the association of late vesicles with microtubules. These results indicate that acquisition and exchange of specific motor and regulatory proteins characterizes and may regulate the transition of early to late endocytic vesicles. Flow cytometric purification should ultimately facilitate detailed proteomic analysis and mapping of endocytic vesicle-associated proteins.


Assuntos
Dineínas/fisiologia , Cinesinas/fisiologia , Microtúbulos/metabolismo , Vesículas Transportadoras/metabolismo , Animais , Anticorpos/imunologia , Transporte Biológico , Complexo Dinactina , Dineínas/análise , Cinesinas/análise , Cinesinas/metabolismo , Proteínas Associadas aos Microtúbulos/análise , Proteínas Associadas aos Microtúbulos/imunologia , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Motores Moleculares/imunologia , Ratos , Proteínas rab de Ligação ao GTP/análise , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab4 de Ligação ao GTP/análise , Proteínas rab4 de Ligação ao GTP/metabolismo , proteínas de unión al GTP Rab7
3.
J Exp Med ; 198(6): 957-62, 2003 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-12975459

RESUMO

Upon thymus entry, thymic-homing progenitors undergo distinct phases of differentiation as they migrate through the cortex to the capsule, suggesting that the signals that induce these differentiation steps may be stratified in corresponding cortical regions. To better define these regions, we transplanted purified stem cells into nonirradiated congenic recipients and followed their differentiation with respect to both tissue location and time. The earliest progenitors (DN1) remained confined to a very narrow region of the cortex for about the first 10 d of intrathymic residence; this region virtually overlaps the sites of thymic entry, suggesting that DN1 cells move very little during this lengthy period of proliferation and lineage commitment. Movement out of this region into the deeper cortex is asynchronous, and corresponds to the appearance of DN2 cells. Differentiation to the DN3 stage correlates with movement across the midpoint of the cortex, indicating that stromal signals that induce functions such as TCR gene rearrangement reside mainly in the outer half of the cortex. The minimum time to reach the capsule, and thus transit to the DP stage, is approximately 13 d, with the average time a few days longer. These findings reveal for the first time the kinetics of steady-state progenitor differentiation in the thymus, as well as defining the boundaries of cortical regions that support different phases of the differentiation process. We also show that the first lineage-positive progeny of transplanted stem cells to appear in the thymus are dendritic cells in the medulla, suggesting that each new wave of new T cell production is preceded by a wave of regulatory cells that home to the medulla and ensure efficient tolerance and selection.


Assuntos
Diferenciação Celular/fisiologia , Células-Tronco Hematopoéticas/fisiologia , Transdução de Sinais/fisiologia , Transplante de Células-Tronco , Timo/metabolismo , Animais , Movimento Celular , Células Dendríticas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Linfócitos T/metabolismo , Timo/citologia , Quimeras de Transplante
4.
J Immunol ; 169(8): 4354-61, 2002 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-12370368

RESUMO

During steady state lymphopoiesis in the postnatal thymus, migration of precursors outward from the deep cortex toward the capsule is required for normal differentiation. Such migration requires, at a minimum, expression of adhesive receptors on the migrating lymphoid cells, as well as a stable matrix of their ligands persisting throughout the region of migration. In this study, we address the nature of this adhesive matrix. Although some precursor stages bound efficiently to extracellular matrix ligands, a specific requirement for the cell surface ligand VCAM-1 was also found. In situ analysis revealed that early precursors are found in intimate contact with a matrix formed by stromal cells in the cortex, a proportion of which expresses VCAM-1. In vivo administration of an anti-VCAM-1 Ab resulted in decreased thymic size and altered distribution of early precursors within the cortex. These results indicate that precursors migrating outward through the cortex may use a cellular, rather than extracellular, matrix for adhesion, and suggest that the VCAM-1(+) subset of cortical stroma may play a crucial role in supporting the migration of early precursors in the steady state thymus.


Assuntos
Movimento Celular/imunologia , Proteínas da Matriz Extracelular/metabolismo , Células-Tronco Hematopoéticas/citologia , Subpopulações de Linfócitos T/citologia , Timo/citologia , Animais , Anticorpos Monoclonais/administração & dosagem , Adesão Celular/imunologia , Diferenciação Celular/imunologia , Proteínas da Matriz Extracelular/imunologia , Células-Tronco Hematopoéticas/imunologia , Células-Tronco Hematopoéticas/metabolismo , Injeções Intralinfáticas , Integrinas/biossíntese , Camundongos , Camundongos Endogâmicos C57BL , Células Estromais/citologia , Células Estromais/imunologia , Células Estromais/metabolismo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Timo/anatomia & histologia , Timo/imunologia , Timo/metabolismo , Molécula 1 de Adesão de Célula Vascular/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA