Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Cardiovasc Med ; 11: 1356010, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38725831

RESUMO

Hutchinson-Gilford Progeria Syndrome (HGPS) is an ultra-rare genetic premature aging disease that is historically fatal in teenage years, secondary to severe accelerated atherosclerosis. The only approved treatment is the farnesyltransferase inhibitor lonafarnib, which improves vascular structure and function, extending average untreated lifespan of 14.5 years by 4.3 years (30%). With this longer lifespan, calcific aortic stenosis (AS) was identified as an emerging critical risk factor for cardiac death in older patients. Intervention to relieve critical AS has the potential for immediate improvement in healthspan and lifespan. However, HGPS patient-device size mismatch, pervasive peripheral arterial disease, skin and bone abnormalities, and lifelong failure to thrive present unique challenges to intervention. An international group of experts in HGPS, pediatric and adult cardiology, cardiac surgery, and pediatric critical care convened to identify strategies for successful treatment. Candidate procedures were evaluated by in-depth examination of 4 cases that typify HGPS clinical pathology. Modified transcatheter aortic valve replacement (TAVR) and left ventricular Apico-Aortic Conduit (AAC) placement were deemed high risk but viable options. Two cases received TAVR and 2 received AAC post-summit. Three were successful and 1 patient died perioperatively due to cardiovascular disease severity, highlighting the importance of intervention timing and comparative risk stratification. These breakthrough interventions for treating critical aortic stenosis in HGPS patients could rewrite the current clinical perspective on disease course by greatly improving late-stage quality of life and increasing lifespan. Expanding worldwide medical and surgical competency for this ultra-rare disease through expert information-sharing could have high impact on treatment success.

2.
Nucleus ; 14(1): 2288476, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38050983

RESUMO

Several related progeroid disorders are caused by defective post-translational processing of prelamin A, the precursor of the nuclear scaffold protein lamin A, encoded by LMNA. Prelamin A undergoes farnesylation and additional modifications at its C-terminus. Subsequently, the farnesylated C-terminal segment is cleaved off by the zinc metalloprotease ZMPSTE24. The premature aging disorder Hutchinson Gilford progeria syndrome (HGPS) and a related progeroid disease, mandibuloacral dysplasia (MAD-B), are caused by mutations in LMNA and ZMPSTE24, respectively, that result in failure to process the lamin A precursor and accumulate permanently farnesylated forms of prelamin A. The farnesyl transferase inhibitor (FTI) lonafarnib is known to correct the aberrant nuclear morphology of HGPS patient cells and improves lifespan in children with HGPS. Importantly, and in contrast to a previous report, we show here that FTI treatment also improves the aberrant nuclear phenotypes in MAD-B patient cells with mutations in ZMPSTE24 (P248L or L425P). As expected, lonafarnib does not correct nuclear defects for cells with lamin A processing-proficient mutations. We also examine prelamin A processing in fibroblasts from two individuals with a prevalent laminopathy mutation LMNA-R644C. Despite the proximity of residue R644 to the prelamin A cleavage site, neither R644C patient cell line shows a prelamin A processing defect, and both have normal nuclear morphology. This work clarifies the prelamin A processing status and role of FTIs in a variety of laminopathy patient cells and supports the FDA-approved indication for the FTI Zokinvy for patients with processing-deficient progeroid laminopathies, but not for patients with processing-proficient laminopathies.


Assuntos
Lipodistrofia , Progéria , Criança , Humanos , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Progéria/tratamento farmacológico , Progéria/genética , Progéria/metabolismo , Inibidores Enzimáticos/farmacologia , Mutação , Lipodistrofia/metabolismo , Fibroblastos/metabolismo , Transferases/genética , Transferases/metabolismo , Metaloendopeptidases/genética , Metaloendopeptidases/metabolismo , Proteínas de Membrana/metabolismo
3.
Geroscience ; 45(2): 1231-1236, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35752705

RESUMO

Clonal hematopoiesis of indeterminate potential (CHIP), defined as the presence of somatic mutations in cancer-related genes in blood cells in the absence of hematological cancer, has recently emerged as an important risk factor for several age-related conditions, especially cardiovascular disease. CHIP is strongly associated with normal aging, but its role in premature aging syndromes is unknown. Hutchinson-Gilford progeria syndrome (HGPS) is an ultra-rare genetic condition driven by the accumulation of a truncated form of the lamin A protein called progerin. HGPS patients exhibit several features of accelerated aging and typically die from cardiovascular complications in their early teens. Previous studies have shown normal hematological parameters in HGPS patients, except for elevated platelets, and low levels of lamin A expression in hematopoietic cells relative to other cell types in solid tissues, but the prevalence of CHIP in HGPS remains unexplored. To investigate the potential role of CHIP in HGPS, we performed high-sensitivity targeted sequencing of CHIP-related genes in blood DNA samples from a cohort of 47 HGPS patients. As a control, the same sequencing strategy was applied to blood DNA samples from middle-aged and elderly individuals, expected to exhibit a biological age and cardiovascular risk profile similar to HGPS patients. We found that CHIP is not prevalent in HGPS patients, in marked contrast to our observations in individuals who age normally. Thus, our study unveils a major difference between HGPS and normal aging and provides conclusive evidence that CHIP is not frequent in HGPS and, therefore, is unlikely to contribute to the pathophysiology of this accelerated aging syndrome.


Assuntos
Doenças Cardiovasculares , Progéria , Humanos , Pessoa de Meia-Idade , Idoso , Adolescente , Progéria/genética , Hematopoiese Clonal , Lamina Tipo A/genética , Envelhecimento/genética , Envelhecimento/metabolismo
4.
Nature ; 589(7843): 608-614, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33408413

RESUMO

Hutchinson-Gilford progeria syndrome (HGPS or progeria) is typically caused by a dominant-negative C•G-to-T•A mutation (c.1824 C>T; p.G608G) in LMNA, the gene that encodes nuclear lamin A. This mutation causes RNA mis-splicing that produces progerin, a toxic protein that induces rapid ageing and shortens the lifespan of children with progeria to approximately 14 years1-4. Adenine base editors (ABEs) convert targeted A•T base pairs to G•C base pairs with minimal by-products and without requiring double-strand DNA breaks or donor DNA templates5,6. Here we describe the use of an ABE to directly correct the pathogenic HGPS mutation in cultured fibroblasts derived from children with progeria and in a mouse model of HGPS. Lentiviral delivery of the ABE to fibroblasts from children with HGPS resulted in 87-91% correction of the pathogenic allele, mitigation of RNA mis-splicing, reduced levels of progerin and correction of nuclear abnormalities. Unbiased off-target DNA and RNA editing analysis did not detect off-target editing in treated patient-derived fibroblasts. In transgenic mice that are homozygous for the human LMNA c.1824 C>T allele, a single retro-orbital injection of adeno-associated virus 9 (AAV9) encoding the ABE resulted in substantial, durable correction of the pathogenic mutation (around 20-60% across various organs six months after injection), restoration of normal RNA splicing and reduction of progerin protein levels. In vivo base editing rescued the vascular pathology of the mice, preserving vascular smooth muscle cell counts and preventing adventitial fibrosis. A single injection of ABE-expressing AAV9 at postnatal day 14 improved vitality and greatly extended the median lifespan of the mice from 215 to 510 days. These findings demonstrate the potential of in vivo base editing as a possible treatment for HGPS and other genetic diseases by directly correcting their root cause.


Assuntos
Adenina/metabolismo , Edição de Genes/métodos , Mutação , Progéria/genética , Progéria/terapia , Alelos , Processamento Alternativo , Animais , Aorta/patologia , Pareamento de Bases , Criança , DNA/genética , Modelos Animais de Doenças , Feminino , Fibroblastos/metabolismo , Humanos , Lamina Tipo A/química , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Longevidade , Masculino , Camundongos , Camundongos Transgênicos , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Progéria/patologia , RNA/genética
5.
Lancet Child Adolesc Health ; 4(4): 281-289, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32119840

RESUMO

BACKGROUND: Hutchinson-Gilford progeria syndrome (termed progeria in this Article) is a rare sporadic genetic disorder. One early clinical manifestation of progeria is abnormal skeletal growth, yet this growth has not been fully characterised. We aimed to characterise the skeletal maturation and long-bone growth patterns of patients with the clinical phenotype of progeria. METHODS: For this retrospective study, we reviewed skeletal surveys of patients (aged <20 years) with progeria obtained over a 9·5-year period. Most surveys included radiographs of the hands and long bones (humeri, radii, ulnas, tibias, and fibulas). Bone ages of these patients were estimated by the standards of Greulich and Pyle. Following the established methods for studying long-bone growth, the study cohort was separated into two overlapping age groups: longitudinal bone length measurements were made between physes for the childhood group (aged 12 years or younger) and from the upper margins of the proximal to the lower margin of the distal ossified epiphyses for the adolescent group (aged 10 years or older). Bone age estimates and bone length measurements were plotted against the chronological age of patients and compared with reference standards. Statistical analyses were based on mixed models. FINDINGS: 85 patients with progeria and 250 skeletal surveys were included in our study. For both sexes, bone age estimates showed a more advanced skeletal maturation rate throughout all chronological ages than the normal rate of 1 (p<0·0001), with the rate of maturation being 1·09 (SE 0·02) for boys and 1·14 (0·02) for girls. Longitudinal long-bone lengths began to deviate from normal standards by age 1-2 years. Growth curves for these long bones plateaued at about half the normal eventual bone length, and the half-life (the time taken to grow to half the eventual bone length) was also about half the time compared with normal standards. INTERPRETATION: Our study established growth curves that might serve as reference standards for skeletal maturation and long-bone growth of patients with the clinical phenotype of progeria. FUNDING: The Progeria Research Foundation, the US National Heart, Lung and Blood Institute, the Dana-Farber Cancer Institute Stop&Shop Pediatric Brain Tumor Program, the US National Center for Research Resources, US National Institutes of Health.


Assuntos
Determinação da Idade pelo Esqueleto/métodos , Desenvolvimento Ósseo/genética , Progéria/genética , Adolescente , Algoritmos , Desenvolvimento Ósseo/fisiologia , Doenças do Desenvolvimento Ósseo/diagnóstico por imagem , Doenças do Desenvolvimento Ósseo/genética , Doenças do Desenvolvimento Ósseo/fisiopatologia , Estudos de Casos e Controles , Criança , Pré-Escolar , Ensaios Clínicos como Assunto , Feminino , Humanos , Lactente , Masculino , Fenótipo , Progéria/diagnóstico por imagem , Progéria/epidemiologia , Progéria/patologia , Radiografia/métodos , Estudos Retrospectivos , Inquéritos e Questionários , Adulto Jovem
6.
Handb Clin Neurol ; 132: 249-64, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26564085

RESUMO

Hutchinson-Gilford progeria syndrome (HGPS) is an extremely rare, uniformly fatal, segmental "premature aging" disease in which children exhibit phenotypes that may give us insights into the aging process at both the cellular and organismal levels. Initial presentation in early childhood is primarily based on growth and dermatologic findings. Primary morbidity and mortality for children with HGPS is from atherosclerotic cardiovascular disease and strokes with death occurring at an average age of 14.6 years. There is increasing data to support a unique phenotype of the craniofacial and cerebrovascular anatomy that accompanies the premature aging process. Strokes in HGPS can occur downstream of carotid artery and/or vertebral artery occlusion, stenosis, and calcification, with prominent collateral vessel formation. Both large and small vessel disease are present, and strokes are often clinically silent. Despite the presence of multisystem premature aging, children with HGPS do not appear to have cognitive deterioration, suggesting that some aspects of brain function may be protected from the deleterious effects of progerin, the disease-causing protein. Based on limited autopsy material, there is no pathologic evidence of dementia or Alzheimer-type changes. In a transgenic mouse model of progeria with expression of the most common HGPS mutation in brain, skin, bone, and heart, there are distortions of neuronal nuclei at the ultrastructural level with irregular shape and severe invaginations, but no evidence of inclusions or aberrant tau in brain sections. Importantly, the nuclear distortions did not result in significant changes in gene expression in hippocampal neurons. This chapter will discuss both preclinical and clinical aspects of the genetics, pathobiology, clinical phenotype, clinical care, and treatment of HGPS, with special attention toward neurologic and cutaneous findings.


Assuntos
Síndromes Neurocutâneas/complicações , Progéria/complicações , Progéria/patologia , Animais , Doenças Cardiovasculares/complicações , Doenças Cardiovasculares/genética , Gerenciamento Clínico , Humanos , Lamina Tipo A/genética , Camundongos , Mutação/genética , Progéria/epidemiologia , Progéria/genética
7.
J Bone Miner Res ; 26(7): 1670-9, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21445982

RESUMO

Hutchinson-Gilford progeria syndrome (HGPS) is a rare segmental premature aging disorder that affects bone and body composition, among other tissues. We sought to determine whether bone density and structural geometry are altered in children with HGPS and whether relationships exist among these parameters and measures of skeletal anthropometry, body composition, and nutrition. We prospectively enrolled 26 children with HGPS (ages 3.1 to 16.2 years). Outcomes included anthropometric data; bone age; areal bone mineral density (aBMD) and body composition by dual-energy X-ray absorptiometry (DXA); volumetric bone mineral density (vBMD), strength-strain index (SSI), and bone structural rigidity calculated from radial transaxial peripheral quantitative computed tomographic (pQCT) images; serum bone biomarkers and hormonal measures; and nutrition assessments. Children with HGPS had low axial aBMD Z-scores by DXA, which improved after adjustment for height age, whereas differences in radial vBMD by pQCT were less striking. However, pQCT revealed distinct abnormalities in both novel measures of bone structural geometry and skeletal strength at the radius compared with healthy controls. Dietary intake was adequate, confirming that HGPS does not represent a model of malnutrition-induced bone loss. Taken together, these findings suggest that the phenotype of HGPS represents a unique skeletal dysplasia.


Assuntos
Osso e Ossos/anormalidades , Progéria/patologia , Absorciometria de Fóton , Adolescente , Determinação da Idade pelo Esqueleto , Antropometria , Estatura , Densidade Óssea , Remodelação Óssea/fisiologia , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/fisiopatologia , Criança , Pré-Escolar , Feminino , Lâmina de Crescimento/diagnóstico por imagem , Lâmina de Crescimento/patologia , Humanos , Masculino , Fenômenos Fisiológicos da Nutrição , Progéria/fisiopatologia , Tomografia Computadorizada por Raios X
8.
PLoS One ; 5(6): e11132, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20559568

RESUMO

Hutchinson-Gilford Progeria Syndrome (HGPS) is a rare premature aging disorder caused by a de novo heterozygous point mutation G608G (GGC>GGT) within exon 11 of LMNA gene encoding A-type nuclear lamins. This mutation elicits an internal deletion of 50 amino acids in the carboxyl-terminus of prelamin A. The truncated protein, progerin, retains a farnesylated cysteine at its carboxyl terminus, a modification involved in HGPS pathogenesis. Inhibition of protein farnesylation has been shown to improve abnormal nuclear morphology and phenotype in cellular and animal models of HGPS. We analyzed global gene expression changes in fibroblasts from human subjects with HGPS and found that a lamin A-Rb signaling network is a major defective regulatory axis. Treatment of fibroblasts with a protein farnesyltransferase inhibitor reversed the gene expression defects. Our study identifies Rb as a key factor in HGPS pathogenesis and suggests that its modulation could ameliorate premature aging and possibly complications of physiological aging.


Assuntos
Inibidores Enzimáticos/farmacologia , Farnesiltranstransferase/antagonistas & inibidores , Lamina Tipo A/metabolismo , Progéria/metabolismo , Proteína do Retinoblastoma/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Western Blotting , Modelos Animais de Doenças , Técnica Indireta de Fluorescência para Anticorpo , Estudo de Associação Genômica Ampla , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
9.
Medicine (Baltimore) ; 87(2): 70-86, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18344805

RESUMO

We describe the clinical features of 28 patients with juvenile dermatomyositis (JDM) and 1 patient with adult-onset dermatomyositis (DM), all of whom developed lipodystrophy (LD) that could be categorized into 1 of 3 phenotypes, generalized, partial, or focal, based on the pattern of fat loss distribution. LD onset was often delayed, beginning a median of 4.6 years after diagnosis of DM. Calcinosis, muscle atrophy, joint contractures, and facial rash were DM disease features found to be associated with LD. Panniculitis was associated with focal lipoatrophy while the anti-p155 autoantibody, a newly described myositis-associated autoantibody, was more associated with generalized LD. Specific LD features such as acanthosis nigricans, hirsutism, fat redistribution, and steatosis/nonalcoholic steatohepatitis were frequent in patients with LD, in a gradient of frequency and severity among the 3 sub-phenotypes. Metabolic studies frequently revealed insulin resistance and hypertriglyceridemia in patients with generalized and partial LD. Regional fat loss from the thighs, with relative sparing of fat loss from the medial thighs, was more frequent in generalized than in partial LD and absent from DM patients without LD. Cytokine polymorphisms, the C3 nephritic factor, insulin receptor antibodies, and lamin mutations did not appear to play a pathogenic role in the development of LD in our patients. LD is an under-recognized sequela of JDM, and certain DM patients with a severe, prolonged clinical course and a high frequency of calcinosis appear to be at greater risk for the development of this complication. High-risk JDM patients should be screened for metabolic abnormalities, which are common in generalized and partial LD and result in much of the LD-associated morbidity. Further study is warranted to investigate the pathogenesis of acquired LD in patients with DM.


Assuntos
Dermatomiosite/complicações , Lipodistrofia/etiologia , Acantose Nigricans/etiologia , Adolescente , Adulto , Autoanticorpos/análise , Biomarcadores/análise , Distribuição da Gordura Corporal , Calcinose/etiologia , Estudos de Casos e Controles , Criança , Contratura/etiologia , Exantema/etiologia , Dermatoses Faciais/etiologia , Fígado Gorduroso/etiologia , Feminino , Seguimentos , Previsões , Hirsutismo/etiologia , Humanos , Hipertrigliceridemia/etiologia , Resistência à Insulina , Lipodistrofia/classificação , Masculino , Atrofia Muscular/etiologia , Paniculite/etiologia , Fenótipo , Índice de Gravidade de Doença , Fatores de Tempo
10.
Pediatrics ; 120(4): 824-33, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17908770

RESUMO

OBJECTIVES: Hutchinson-Gilford progeria syndrome is a rare and uniformly fatal segmental "premature aging" disease that affects a variety of organ systems. We sought to more clearly define the bone and weight abnormalities in patients with progeria as potential outcome parameters for prospective clinical trials. PATIENTS AND METHODS: We collected and analyzed longitudinal medical information, both retrospectively and prospectively, from a total of 41 children with Hutchinson-Gilford progeria syndrome spanning 14 countries, from the Progeria Research Foundation Medical and Research Database at the Brown University Center for Gerontology. RESULTS: In addition to a number of previously well-defined phenotypic findings in children with progeria, this study identified abnormalities in the eruption of secondary incisors lingually and palatally in the mandible and maxilla, respectively. Although bony structures appeared normal in early infancy, clavicular resorption, coxa valga, avascular necrosis of the femoral head, modeling abnormalities of long bones with slender diaphyses, flared metaphyses, and overgrown epiphyses developed. Long bones showed normal cortical thickness centrally and progressive focal demineralization peripherally. The most striking finding identified in the retrospective data set of 35 children was an average weight increase of only 0.44 kg/year, beginning at approximately 24 months of age and persisting through life, with remarkable intrapatient linearity. This rate is >2 SD below normal weight gain for any corresponding age and sharply contrasts with the parabolic growth pattern for normal age- and gender-matched children. This finding was also confirmed prospectively. CONCLUSIONS: Our analysis shows evidence of a newly identified abnormal growth pattern for children with Hutchinson-Gilford progeria syndrome. The skeletal and dental findings are suggestive of a developmental dysplasia rather than a classical aging process. The presence of decreased and linear weight gain, maintained in all of the patients after the age of 2 years, provides the ideal parameter on which altered disease status can be assessed in clinical trials.


Assuntos
Doenças do Desenvolvimento Ósseo/genética , Deficiências do Desenvolvimento/genética , Progressão da Doença , Progéria/genética , Adolescente , Peso Corporal , Desmineralização Patológica Óssea/genética , Reabsorção Óssea/genética , Osso e Ossos/anormalidades , Criança , Pré-Escolar , Contratura/genética , Feminino , Necrose da Cabeça do Fêmur/genética , Humanos , Incisivo/anormalidades , Lactente , Recém-Nascido , Artropatias/genética , Estudos Longitudinais , Masculino , Estudos Prospectivos , Estudos Retrospectivos , Erupção Dentária
11.
Proc Natl Acad Sci U S A ; 103(7): 2154-9, 2006 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-16461887

RESUMO

Hutchinson-Gilford progeria syndrome (HGPS; Online Mendelian Inheritance in Man accession no. 176670) is a rare disorder that is characterized by segmental premature aging and death between 7 and 20 years of age from severe premature atherosclerosis. Mutations in the LMNA gene are responsible for this syndrome. Approximately 80% of HGPS cases are caused by a G608 (GGC-->GGT) mutation within exon 11 of LMNA, which elicits a deletion of 50 aa near the C terminus of prelamin A. In this article, we present evidence that the mutant lamin A (progerin) accumulates in the nucleus in a cellular age-dependent manner. In human HGPS fibroblast cultures, we observed, concomitantly to nuclear progerin accumulation, severe nuclear envelope deformations and invaginations preventable by farnesyltransferase inhibition. Nuclear alterations affect cell-cycle progression and cell migration and elicit premature senescence. Strikingly, skin biopsy sections from a subject with HGPS showed that the truncated lamin A accumulates primarily in the nuclei of vascular cells. This finding suggests that accumulation of progerin is directly involved in vascular disease in progeria.


Assuntos
Núcleo Celular/química , Lamina Tipo A/análise , Lamina Tipo A/genética , Progéria/metabolismo , Fatores Etários , Senilidade Prematura/genética , Anticorpos , Aterosclerose/genética , Movimento Celular , Núcleo Celular/metabolismo , Proliferação de Células , Células Cultivadas , Células Endoteliais/química , Células Endoteliais/metabolismo , Inibidores Enzimáticos/farmacologia , Farnesiltranstransferase/antagonistas & inibidores , Fibroblastos/química , Fibroblastos/metabolismo , Humanos , Lamina Tipo A/metabolismo , Mutação , Progéria/genética , Progéria/patologia , Pele/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA