Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Minim Invasive Ther Allied Technol ; 31(7): 1086-1095, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36148547

RESUMO

INTRODUCTION: In non-resectable tumors, chemotherapy is crucial to improve patient survival. However, it is often accompanied by considerable side effects. Targeted delivery of chemotherapy by coupling with iron oxide superparamagnetic nanoparticles (IONP) could potentially increase efficacy while decreasing adverse systemic side effects. We aimed to evaluate the feasibility of targeting nontoxic, biodegradable-IONP into tumors in-vivo by applying an external magnetic field. MATERIAL AND METHODS: Subcutaneous colon carcinoma tumors were induced in 35 mice. IONP was injected systemically, followed by suturing of a magnet on top of the tumors for 2-24 h. Tumors and livers were excised and stained for iron to explore IONP localization. RESULTS: Iron staining was evident in 43% and 20% of tumors exposed to magnets for 4 h or 24 h, respectively. No iron was present following 2 h exposure, nor in the control group; however, iron stain in the livers indicates most of the IONP were cleared by the liver 24 h later. CONCLUSION: We demonstrated the targeting feasibility of IONP to tumor tissue by an external magnetic field. Our data shows successful targeting; however, with low efficacy following systemic injection of the IONP. As such, a paradigm shift is strongly recommended from systemic to locoregional IONP injection to increase targeting efficacy.


Assuntos
Nanopartículas de Magnetita , Neoplasias , Animais , Estudos de Viabilidade , Compostos Férricos/uso terapêutico , Magnetismo , Camundongos , Modelos Animais
2.
J Orthop Res ; 39(7): 1540-1547, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-32410235

RESUMO

Lateral ligament tears, also known as high-grade ankle sprains, are common, debilitating, and usually heal slowly. Ten to thirty percent of patients continue to suffer from chronic pain and ankle instability even after 3 to 9 months. Previously, we showed that the recombinant human amelogenin (rHAM+ ) induced regeneration of fully transected rat medial collateral ligament, a common proof-of-concept model. Our aim was to evaluate whether rHAM+ can regenerate torn ankle calcaneofibular ligament (CFL), an important component of the lateral ankle stabilizers. Right CFLs of Sabra rats were transected and treated with 0, 0.5, or 1 µg/µL rHAM+ dissolved in propylene glycol alginate (PGA). Results were compared with the normal group, without surgery. Healing was evaluated 12 weeks after treatment by mechanical testing (ratio between the right and left, untransected ligaments of the same rat), and histology including immunohistochemical staining of collagen I and S100. The mechanical properties, structure, and composition of transected ligaments treated with 0.5 µg/µL rHAM+ (experimental) were similar to untransected ligaments. PGA (control) treated ligaments were much weaker, lax, and unorganized compared with untransected ligaments. Treatment with 1 µg/µL rHAM+ was not as efficient as 0.5 µg/µL rHAM+ . Normal arrangement of collagen I fibers and of proprioceptive nerve endings, parallel to the direction of the force, was detected in ligaments treated with 0.5 µg/µL rHAM+ , and scattered arrangement, resembling scar tissue, in control ligaments. In conclusion, we showed that rHAM+ induced significant mechanical and structural regeneration of torn rat CFLs, which might be translated into treatment for grades 2 and 3 ankle sprain injuries.


Assuntos
Amelogenina/uso terapêutico , Traumatismos do Tornozelo/tratamento farmacológico , Ligamentos Laterais do Tornozelo/efeitos dos fármacos , Regeneração/efeitos dos fármacos , Amelogenina/farmacologia , Animais , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Feminino , Terminações Nervosas/efeitos dos fármacos , Ratos , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/uso terapêutico
3.
J Mol Neurosci ; 68(1): 135-143, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30903486

RESUMO

Nerve growth factor (NGF) promotes pleiotropic gene transcription-dependent biological effects, in neuronal and non-neuronal cells, including survival, proliferation, differentiation, neuroprotection, pain, and angiogenesis. It is hypothesized that during odontogenesis, NGF may be implicated in morphogenetic and mineralization events by affecting proliferation and/or differentiation of dental cells. Tuftelin belongs to the enamel associated teeth proteins and is thought to play a role in enamel mineralization. We previously reported that tuftelin transcript and protein, which are ubiquitously expressed in various tissues of embryos, adults, and tumors, were significantly upregulated during NGF-induced PC12 differentiation. To further confirm the involvement of tuftelin in the differentiation process, we established a tuftelin-knockdown neuronal PC12 cell model, using a non-cytotoxic siRNA directed towards sequences at the 3' UTR of the tuftelin gene. Using real-time PCR, we quantified tuftelin mRNA expression and found that tuftelin siRNA, but not scrambled siRNA or transfection reagents, efficiently depleted about 60% of NGF-induced tuftelin mRNA transcripts. The effect of tuftelin siRNA was quantified up to 6 days of NGF-induced differentiation. Using immunofluorescence and western blot analyses, we also found a direct correlation between reduction of 60-80% in tuftelin protein expression and inhibition of about 50-70% in NGF-induced differentiation of the cells, as was detected after 3-6 days of treatment. These results demonstrate an important role for tuftelin in NGF-induced differentiation of PC12 cells. Tuftelin could be a useful target for drug development in disease where neurotrophin therapy is required.


Assuntos
Proteínas do Esmalte Dentário/metabolismo , Neurogênese/genética , Animais , Proteínas do Esmalte Dentário/genética , Fator de Crescimento Neural/farmacologia , Neurogênese/efeitos dos fármacos , Células PC12 , Ratos
4.
J Cell Mol Med ; 20(5): 815-24, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26917487

RESUMO

Injuries to ligaments are common, painful and debilitating, causing joint instability and impaired protective proprioception sensation around the joint. Healing of torn ligaments usually fails to take place, and surgical replacement or reconstruction is required. Previously, we showed that in vivo application of the recombinant human amelogenin protein (rHAM(+)) resulted in enhanced healing of the tooth-supporting tissues. The aim of this study was to evaluate whether amelogenin might also enhance repair of skeletal ligaments. The rat knee medial collateral ligament (MCL) was chosen to prove the concept. Full thickness tear was created and various concentrations of rHAM(+), dissolved in propylene glycol alginate (PGA) carrier, were applied to the transected MCL. 12 weeks after transection, the mechanical properties, structure and composition of transected ligaments treated with 0.5 µg/µl rHAM(+) were similar to the normal un-transected ligaments, and were much stronger, stiffer and organized than control ligaments, treated with PGA only. Furthermore, the proprioceptive free nerve endings, in the 0.5 µg/µl rHAM(+) treated group, were parallel to the collagen fibres similar to their arrangement in normal ligament, while in the control ligaments the free nerve endings were entrapped in the scar tissue at different directions, not parallel to the axis of the force. Four days after transection, treatment with 0.5 µg/µl rHAM(+) increased the amount of cells expressing mesenchymal stem cell markers at the injured site. In conclusion application of rHAM(+) dose dependently induced mechanical, structural and sensory healing of torn skeletal ligament. Initially the process involved recruitment and proliferation of cells expressing mesenchymal stem cell markers.


Assuntos
Amelogenina/farmacologia , Ligamento Colateral Médio do Joelho/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Propriocepção/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Alginatos/administração & dosagem , Animais , Biomarcadores/metabolismo , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Portadores de Fármacos , Feminino , Humanos , Ligamento Colateral Médio do Joelho/lesões , Ligamento Colateral Médio do Joelho/inervação , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Terminações Nervosas/efeitos dos fármacos , Ratos , Proteínas Recombinantes/farmacologia , Resistência à Tração , Cicatrização/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA