Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 12: 782891, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34925364

RESUMO

Benznidazole (Bzl), the drug of choice in many countries for the treatment of Chagas disease, leads to parasite clearance in the early stages of infection and contributes to immunomodulation. In addition to its parasiticidal effect, Bzl inhibits the NF-κB pathway. In this regard, we have previously described that this occurs through IL-10/STAT3/SOCS3 pathway. PI3K pathway is involved in the regulation of the immune system by inhibiting NF-κB pathway through STAT3. In this work, the participation of PI3K in the immunomodulatory effects of Bzl in cardiac and immune cells, the main targets of Chagas disease, was further studied. For that, we use a murine primary cardiomyocyte culture and a monocyte/macrophage cell line (RAW 264.7), stimulated with LPS in presence of LY294002, an inhibitor of PI3K. Under these conditions, Bzl could neither increase SOCS3 expression nor inhibit the NOS2 mRNA expression and the release of NOx, both in cardiomyocytes and macrophages. Macrophages are crucial in the development of Chronic Chagas Cardiomyopathy. Thus, to deepen our understanding of how Bzl acts, the expression profile of M1-M2 macrophage markers was evaluated. Bzl inhibited the release of NOx (M1 marker) and increased the expression of Arginase I (M2 marker) and a negative correlation was found between them. Besides, LPS increased the expression of pro-inflammatory cytokines. Bzl treatment not only inhibited this effect but also increased the expression of typical M2-macrophage markers like Mannose Receptor, TGF-ß, and VEGF-A. Moreover, Bzl increased the expression of PPAR-γ and PPAR-α, known as key regulators of macrophage polarization. PI3K directly regulates M1-to-M2 macrophage polarization. Since p110δ, catalytic subunit of PI3Kδ, is highly expressed in immune cells, experiments were carried out in presence of CAL-101, a specific inhibitor of this subunit. Under this condition, Bzl could neither increase SOCS3 expression nor inhibit NF-κB pathway. Moreover, Bzl not only failed to inhibit the expression of pro-inflammatory cytokines (M1 markers) but also could not increase M2 markers. Taken together these results demonstrate, for the first time, that the anti-inflammatory effect of Bzl depends on PI3K activity in a cell line of murine macrophages and in primary culture of neonatal cardiomyocytes. Furthermore, Bzl-mediated increase expression of M2-macrophage markers involves the participation of the p110δ catalytic subunit of PI3Kδ.


Assuntos
Anti-Inflamatórios/farmacologia , Cardiomiopatia Chagásica/tratamento farmacológico , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Nitroimidazóis/farmacologia , Animais , Animais Recém-Nascidos , Anti-Inflamatórios/uso terapêutico , Cardiomiopatia Chagásica/imunologia , Cromonas/farmacologia , Classe I de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Modelos Animais de Doenças , Feminino , Humanos , Lipopolissacarídeos/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , Morfolinas/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/imunologia , Miócitos Cardíacos/metabolismo , Nitroimidazóis/uso terapêutico , Cultura Primária de Células , Células RAW 264.7
2.
Int J Parasitol Drugs Drug Resist ; 7(3): 378-387, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29040909

RESUMO

Trypanosoma cruzi induces serious cardiac alterations during the chronic infection. Intense inflammatory response observed from the beginning of infection, is critical for the control of parasite proliferation and evolution of Chagas disease. Peroxisome proliferator-activated receptors (PPAR)-α, are known to modulate inflammation. In this study we investigated whether a PPAR-α agonist, Fenofibrate, improves cardiac function and inflammatory parameters in a murine model of T. cruzi infection. BALB/c mice were sequentially infected with two T. cruzi strains of different genetic background. Benznidazole, commonly used as trypanocidal drug, cleared parasites but did not preclude cardiac pathology, resembling what is found in human chronic chagasic cardiomyopathy. Fenofibrate treatment restored to normal values the ejection and shortening fractions, left ventricular end-diastolic, left ventricular end-systolic diameter, and isovolumic relaxation time. Moreover, it reduced cardiac inflammation and fibrosis, decreased the expression of pro-inflammatory (IL-6, TNF-α and NOS2) and heart remodeling mediators (MMP-9 and CTGF), and reduced serum creatine kinase activity. The fact that Fenofibrate partially inhibited NOS2 expression and NO release in the presence of a PPAR-α non-competitive inhibitor, suggested it also acted through PPAR-α-independent pathways. Since IκBα cytosolic degradation was inhibited by Fenofibrate, it can be concluded that the NFκB pathway has a role in its effects. Thus, we demonstrate that Fenofibrate acts through PPAR-α-dependent and -independent pathways. Our study shows that combined treatment with Fenofibrate plus Benznidazole is able both to reverse the cardiac dysfunction associated with the ongoing inflammatory response and fibrosis and to attain parasite clearance in an experimental model of Chagas disease.


Assuntos
Cardiomiopatia Chagásica/tratamento farmacológico , Fenofibrato/uso terapêutico , Nitroimidazóis/uso terapêutico , Tripanossomicidas/uso terapêutico , Disfunção Ventricular/tratamento farmacológico , Animais , Cardiomiopatia Chagásica/complicações , Cardiomiopatia Chagásica/parasitologia , Doença de Chagas/complicações , Doença de Chagas/tratamento farmacológico , Doença de Chagas/parasitologia , Diástole/efeitos dos fármacos , Fenofibrato/administração & dosagem , Fibrose/tratamento farmacológico , Humanos , Inflamação/tratamento farmacológico , Inflamação/parasitologia , Inflamação/fisiopatologia , Interleucina-6/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , NF-kappa B/efeitos dos fármacos , Óxido Nítrico Sintase Tipo II/efeitos dos fármacos , Nitroimidazóis/administração & dosagem , Nitroimidazóis/efeitos adversos , PPAR alfa/agonistas , Volume Sistólico/efeitos dos fármacos , Tripanossomicidas/administração & dosagem , Tripanossomicidas/efeitos adversos , Trypanosoma cruzi/efeitos dos fármacos , Fator de Necrose Tumoral alfa/efeitos dos fármacos , Disfunção Ventricular/etiologia , Função Ventricular/efeitos dos fármacos
3.
Biochim Biophys Acta ; 1852(5): 893-904, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25557389

RESUMO

Trypanosoma cruzi, the etiological agent of Chagas' disease, induces a persistent inflammatory response. Macrophages are a first line cell phenotype involved in the clearance of infection. Upon parasite uptake, these cells increase inflammatory mediators like NO, TNF-α, IL-1ß and IL-6, leading to parasite killing. Although desired, inflammatory response perpetuation and exacerbation may lead to tissue damage. Peroxisome proliferator-activated receptors (PPARs) are ligand-dependent nuclear transcription factors that, besides regulating lipid and carbohydrate metabolism, have a significant anti-inflammatory effect. This is mediated through the interaction of the receptors with their ligands. PPARγ, one of the PPAR isoforms, has been implicated in macrophage polarization from M1, the classically activated phenotype, to M2, the alternatively activated phenotype, in different models of metabolic disorders and infection. In this study, we show for the first time that, besides PPARγ, PPARα is also involved in the in vitro polarization of macrophages isolated from T. cruzi-infected mice. Polarization was evidenced by a decrease in the expression of NOS2 and proinflammatory cytokines and the increase in M2 markers like Arginase I, Ym1, mannose receptor and TGF-ß. Besides, macrophage phagocytic activity was significantly enhanced, leading to increased parasite load. We suggest that modulation of the inflammatory response by both PPARs might be due, at least in part, to a change in the profile of inflammatory macrophages. The potential use of PPAR agonists as modulators of overt inflammatory response during the course of Chagas' disease deserves further investigation.


Assuntos
Doença de Chagas/metabolismo , Macrófagos/metabolismo , PPAR alfa/metabolismo , PPAR gama/metabolismo , Animais , Arginase/genética , Arginase/metabolismo , Western Blotting , Células Cultivadas , Doença de Chagas/genética , Doença de Chagas/parasitologia , Citocinas/genética , Citocinas/metabolismo , Interações Hospedeiro-Patógeno , Mediadores da Inflamação/metabolismo , Lectinas/genética , Lectinas/metabolismo , Ligantes , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/classificação , Macrófagos/efeitos dos fármacos , Masculino , Camundongos Endogâmicos BALB C , Microscopia de Fluorescência , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , PPAR alfa/genética , PPAR gama/genética , Fagocitose/efeitos dos fármacos , Prostaglandina D2/análogos & derivados , Prostaglandina D2/farmacologia , Pirimidinas/farmacologia , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Trypanosoma cruzi/fisiologia , beta-N-Acetil-Hexosaminidases/genética , beta-N-Acetil-Hexosaminidases/metabolismo
4.
PLoS One ; 8(11): e79445, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24260222

RESUMO

Trypanosoma cruzi (T. cruzi) infection produces an intense inflammatory response which is critical for the control of the evolution of Chagas' disease. Interleukin (IL)-10 is one of the most important anti-inflammatory cytokines identified as modulator of the inflammatory reaction. This work shows that exogenous addition of IL-10 inhibited ERK1/2 and NF-κB activation and reduced inducible nitric oxide synthase (NOS2), metalloprotease (MMP) -9 and MMP-2 expression and activities, as well as tumour necrosis factor (TNF)-α and interleukin (IL)-6 expression, in T. cruzi-infected cardiomyocytes. We found that T. cruzi and IL-10 promote STAT3 phosphorylation and up-regulate the expression of suppressor of cytokine signalling (SOCS)-3 thereby preventing NF-κB nuclear translocation and ERK1/2 phosphorylation. Specific knockdown of SOCS-3 by small interfering RNA (siRNA) impeded the IL-10-mediated inhibition of NF-κB and ERK1/2 activation. As a result, the levels of studied pro-inflammatory mediators were restored in infected cardiomyocytes. Our study reports the first evidence that T. cruzi up- regulates SOCS-3 expression and highlights the relevance of IL-10 in the modulation of pro-inflammatory response of cardiomyocytes in Chagas' disease.


Assuntos
Interleucina-10/farmacologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/parasitologia , NF-kappa B/metabolismo , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Trypanosoma cruzi/patogenicidade , Animais , Células Cultivadas , Masculino , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Fosforilação/efeitos dos fármacos
5.
J Cell Physiol ; 228(7): 1584-93, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23335284

RESUMO

Macrophages (Mps) can exert the defense against invading pathogens. During sepsis, bacterial lipopolisaccharide (LPS) activates the production of inflammatory mediators by Mps. Nitric oxide synthase (NOS) derived-nitric oxide (NO) is one of them. Besides, Mps may produce pro-angiogenic molecules such as vascular endothelial growth factor-A (VEGF-A) and metalloproteinases (MMPs). The mechanisms involved in the cardiac neovascular response by Mps during sepsis are not completely known. We investigated the ability of LPS-treated Mps from septic mice to modulate the behavior of cardiac cells as producers of NO and angiogenic molecules. In vivo LPS treatment (0.1 mg/mouse) increased NO production more than fourfold and induced de novo NOS2 expression in Mps. Immunoblotting assays also showed an induction in VEGF-A and MMP-9 expression in lysates obtained from LPS-treated Mps, and MMP-9 activity was detected by zymography in cell supernatants. LPS-activated Mps co-cultured with normal heart induced the expression of CD31 and VEGF-A in heart homogenates and increased MMP-9 activity in the supernatants. By immunohistochemistry, we detected new blood vessel formation in hearts cultured with LPS treated Mps. When LPS-stimulated Mps were co-cultured with isolated cardiomyocytes in a transwell assay, the expression of NOS2, VEGF-A and MMP-9 was induced in cardiac cells. In addition, MMP-9 activity was up-regulated in the supernatant of cardiomyocytes. The latter was due to NOS2 induction in Mps from in vivo LPS-treated mice. In conclusion LPS-treated Mps are inducers of inflammatory/angiogenic mediators in cardiac cells, which could be triggering neovascularization, as an attempt to improve cardiac performance in sepsis.


Assuntos
Macrófagos Peritoneais/metabolismo , Miocárdio/metabolismo , Neovascularização Patológica/metabolismo , Óxido Nítrico Sintase/metabolismo , Sepse/metabolismo , Animais , Feminino , Imunidade Inata , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/imunologia , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Miocárdio/imunologia , Miócitos Cardíacos/imunologia , Miócitos Cardíacos/metabolismo , Neovascularização Patológica/etiologia , Neovascularização Patológica/imunologia , Sepse/complicações , Sepse/imunologia , Fator A de Crescimento do Endotélio Vascular/metabolismo
6.
Biochim Biophys Acta ; 1832(1): 239-48, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22917565

RESUMO

Trypanosoma cruzi (T. cruzi), the etiological agent of Chagas' disease, causes cardiac alterations in the host. Although the main clinical manifestations arise during the chronic stage, the mechanisms leading to heart damage develop early during infection. In fact, an intense inflammatory response is observed from acute stage of infection. Recently, peroxisome proliferator-activated receptors (PPARs) have attracted research interest due to their participation in the modulation of inflammation. In this work we addressed the role of 15-Deoxy-∆(12,14) ProstaglandinJ2 (15dPGJ2), a PPARγ natural ligand in the regulation of inflammatory mediators, in acute and chronic experimental mouse models of Chagas' disease with the RA and K98 T. cruzi strains, respectively. This work demonstrates that 15dPGJ2 treatment inhibits the expression and activity of inducible nitric oxide synthase (NOS2) as well as TNF-α and IL-6 mRNA levels. Also, expression and activity of metalloproteinases 2 (MMP-2) and 9 (MMP9) were inhibited by 15dPGJ2. Moreover GW9662, a specific PPARγ antagonist, revealed the participation of other signaling pathways since, in GW9662 presence, 15dPJG2 had a partial effect on the inhibition of inflammatory parameters in the acute model of infection. Accordingly, NF-κB activation was demonstrated, assessing p65 nuclear translocation in the hearts of infected mice with both T. cruzi strains. Such effect was inhibited after 15dPGJ2 treatment. Our findings support the concept that in vivo PPARγ and NF-κB pathways are implicated in the inhibitory effects of 15dPGJ2 on inflammatory mediators at different times depending on whether the infection is caused by the lethal or non-lethal T. cruzi strain.


Assuntos
Doença de Chagas/tratamento farmacológico , Doença de Chagas/imunologia , Mediadores da Inflamação/imunologia , Miocárdio/imunologia , Prostaglandina D2/administração & dosagem , Trypanosoma cruzi/fisiologia , Animais , Doença de Chagas/genética , Doença de Chagas/parasitologia , Regulação para Baixo/efeitos dos fármacos , Coração/efeitos dos fármacos , Humanos , Interleucina-6/genética , Interleucina-6/imunologia , Ligantes , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/imunologia , PPAR gama/genética , PPAR gama/imunologia , Trypanosoma cruzi/patogenicidade , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
7.
Int J Parasitol ; 41(5): 553-62, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21215746

RESUMO

Trypanosoma cruzi infection produces an intense inflammatory response in diverse tissues including the heart. The inflammatory reaction is critical for the control of the parasites' proliferation and evolution of Chagas disease. 15-Deoxy-Δ(12,14) prostaglandin J(2) (15dPGJ2) can repress the inflammatory response in many experimental models. However, the precise role of peroxisome proliferator-activated receptor γ (PPARγ) ligands in T. cruzi infection or in Chagas disease is poorly understood. This work reports the first evidence that 15dPGJ2 treatment increases the number of intracellular parasites as shown by fluorescence microscopy and it is also able to inhibit the expression and activity of different inflammatory enzymes such as inducible nitric oxide synthase (NOS-2), matrix metalloproteinases 2 and 9 (MMP-2, MMP-9), as well as pro-inflammatory cytokine (TNF-α and IL-6) mRNA expression in neonatal mouse cardiomyocytes after T. cruzi infection. Transfection of cardiomyocytes with small interfering RNA (siRNA) induces silencing of PPARγ and impairs the effects of 15dPGJ2 on the modulation of pro-inflammatory enzymes. Moreover, transfection restores the ability of these cells to control the intracellular growth of T. cruzi. We also found that PPARγ-independent pathways are involved, since 15dPGJ2 also exerts its effect through extracellular signal-regulated kinases-mitogen-activated protein kinase (Erk-MAPK) and nuclear factor-κB (NF-κB). The use of specific pharmacological inhibitors confirmed these findings. Our data point out that 15dPGJ2 is a potent modulator of the inflammatory process and regulator of parasites growth through PPARγ-dependent and independent (Erk-MAPK- and NF-κB) pathways in T. cruzi infected neonatal cardiac cells.


Assuntos
Antineoplásicos/uso terapêutico , Doença de Chagas/tratamento farmacológico , Doença de Chagas/imunologia , Miócitos Cardíacos/imunologia , Prostaglandina D2/análogos & derivados , Trypanosoma cruzi/fisiologia , Animais , Células Cultivadas , Doença de Chagas/genética , Doença de Chagas/parasitologia , Citocinas/genética , Citocinas/imunologia , Regulação para Baixo/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Camundongos , Miócitos Cardíacos/parasitologia , PPAR gama/genética , PPAR gama/imunologia , Prostaglandina D2/uso terapêutico , Trypanosoma cruzi/efeitos dos fármacos , Trypanosoma cruzi/imunologia
8.
Microbes Infect ; 10(14-15): 1431-9, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18801455

RESUMO

Although dam mutants of Salmonella have been proposed as live vaccines, their capacity to trigger cell inflammatory cascades has not been fully elucidated. We investigated in detail the ability of Salmonella enterica dam mutant to activate the signalling pathways of the inflammatory response in RAW 264.7 cells. Apoptosis in macrophages treated with Salmonella dam mutant was low. Similarly, the expression of both NOS-2 and COX-2 and subsequently the production of NO and PGE(2) was significantly reduced. Also, Salmonella dam mutant induced an attenuated activation of the inflammatory signalling pathway as indicated by the reduced degradation of IkappaBalpha and IkappaBbeta and the low IkappaBalpha phosphorylation found. In addition, translocation of p65 to the nucleus was notably impaired and the amount of phosphorylated p44, p42 and p38 MAPKs was clearly reduced in extracts from dam-infected macrophages. These results indicate that the lack of ERK and p38 phosphorylation at the proper time in dam-infected cells notably reduces the engagement of subsequent signalling pathways involved in the full activation of NF-kappaB in response to infection. Taken together, these results suggest that Salmonella activation of both signalling cascades in the inflammatory response is a mechanism requiring Dam protein participation.


Assuntos
Ciclo-Oxigenase 2/biossíntese , Macrófagos/imunologia , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , NF-kappa B/antagonistas & inibidores , Óxido Nítrico Sintase Tipo II/biossíntese , Salmonella enteritidis/genética , Salmonella enteritidis/imunologia , DNA Metiltransferases Sítio Específica (Adenina-Específica)/deficiência , Animais , Proteínas de Bactérias/genética , Linhagem Celular , Dinoprostona/metabolismo , Camundongos , Óxido Nítrico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA