Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Med Microbiol Immunol ; 212(3): 221-229, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37308752

RESUMO

Pattern recognition receptors of the innate immune system, such as RIG-I and MDA5, are responsible for recognizing viruses and inducing interferon production. Genetic polymorphisms in the coding regions of RLR may be associated with the severity of COVID-19. Considering the contribution of the RLR signaling in immune-mediated reactions, this study investigated the association between three SNP in the coding region of IFIH1 and DDX58 genes with the susceptibility to COVID-19 in the Kermanshah population, Iran. 177 patients with severe and 182 with mild COVID-19 were admitted for this study. Genomic DNA was extracted from peripheral blood leukocytes of patients to determine the genotypes of two SNPs, rs1990760(C>T) and rs3747517(T>C) IFIH1 gene and rs10813831(G>A) DDX58 gene using PCR-RFLP method. Our results showed that the frequency of the AA genotype of rs10813831(G>A) was associated with susceptibility to COVID-19 compared to the GG genotype (p = 0.017, OR = 2.593, 95% CI 1.173-5.736). We also observed a statistically significant difference in the recessive model for SNPs rs10813831 variant (AA versus GG + GA, p = 0.003, OR = 2.901, 95% CI 1.405-6.103). Furthermore, No significant association was found between rs1990760 (C>T) and rs3747517(T>C) of IFIH1 gene polymorphisms with COVID-19. Our findings suggest that DDX58 rs10813831(A>G) polymorphism may be associated with COVID-19 severity in the Kermanshah population, Iran.


Assuntos
COVID-19 , RNA Helicases DEAD-box , Humanos , Helicase IFIH1 Induzida por Interferon/genética , RNA Helicases DEAD-box/genética , Predisposição Genética para Doença , COVID-19/genética , Genótipo , Polimorfismo de Nucleotídeo Único , Proteína DEAD-box 58/genética , Receptores Imunológicos/genética
2.
Cytokine ; 154: 155889, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35461173

RESUMO

BACKGROUND: Emerged coronavirus disease 2019 (COVID-19) is a pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-COV-2). Disease severity is associated with elevated levels of proinflammatory cytokines, such as interleukin-6 (IL-6). Genetic polymorphisms in the regulatory regions of cytokine genes may be associated with differential cytokine production in COVID-19 patients. This study aimed to investigate the association between three potentially functional single-nucleotide polymorphisms (SNPs) in the promoter region of IL-6 and the severity of susceptibility to COVID-19 in an Iranian population. METHODS: In total, 346 individuals (175 patients with severe COVID-19 and 171 patients with mild COVID-19) were recruited for this cohort study. Genomic DNA was extracted from peripheral blood leukocytes of patients to determine the genotypes of three selected SNPs (rs1800795 (-174 G > C), rs1800796 (-572 G > C), and rs1800797 (-597 G > A)) in the promoter region of the IL-6 gene using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. RESULTS: There were no significant differences in the genotype or allele distribution of selected SNPs (rs1800795 (-174 G > C), rs1800796 (-572 G > C), and rs1800797 (-597 G > A)) in the promoter region of the IL-6 gene in patients with severe COVID-19 and patients with mild COVID-19. DISCUSSION: Our study indicated that these SNPs are not associated with COVID-19 severity in the Kurdish population from Kermanshah, Iran.


Assuntos
COVID-19 , Interleucina-6 , Polimorfismo de Nucleotídeo Único , COVID-19/genética , COVID-19/patologia , Estudos de Casos e Controles , Estudos de Coortes , Citocinas/genética , Frequência do Gene/genética , Predisposição Genética para Doença , Genótipo , Humanos , Interleucina-6/genética , Irã (Geográfico)/epidemiologia , SARS-CoV-2
3.
Heliyon ; 8(3): e09178, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35368523

RESUMO

Background: Diabetic neuropathy (DN) is a prevalent complication of diabetes mellitus characterized by pain and inflammation. Long non-coding RNAs (lncRNAs) have been associated with DN. This study aimed to investigate transcript levels of Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), microRNA (miR)-1-3p, and C-X-C motif chemokine receptor 4 (CXCR4) in the DN patients and type 2 diabetes mellitus (T2DM) cases without neuropathy. Methods: Here, 20 cases with DN and 20 T2DM subjects without neuropathy (as the control group) were included. Total RNA was extracted from peripheral blood mononuclear cells (PBMCs) of all participants. The expression levels of targets were evaluated by Real-time-PCR. Results: Results showed that MALAT1 (Fold change = 2.47, P = 0.03) and CXCR4 (Fold change = 1.65, P = 0.023) were significantly upregulated, while miR-1-3p was downregulated (Fold change = 0.9, P = 0.028) in whole blood samples from DN patients compared to the control group. A significant correlation was found between transcript levels of MALAT1 and CXCR4 (rho = 0.84; P < 0.0001). Conclusions: This study suggests a possible involvement of the MALAT1/miR-1-3p/CXCR4 axis in the pathogenesis of DN.

4.
Gene ; 746: 144637, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32244055

RESUMO

Semaphorins are a group of proteins that are divided into eight subclasses and identified by a conserved Sema domain on their carboxyl terminus. Sema4A, 4C, and 4D are the members of the fourth class of semaphorin family, which are known as membrane semaphorins; however, these molecules can be altered to soluble semaphorins by proteolytic cleavage. Semaphorins have various roles in the immune, nervous, and metabolic systems. In the immune system, these molecules contribute to the formation of cellular, humoral, and innate immune responses, such as inflammation, leukocyte migration, immunological synapse formation, and germinal center events. Given the diverse roles of semaphorins in the immune system, in this review, we have tried to give a comprehensive look at the role of these molecules in autoimmunity, allergy, and cancer. Sema4D and 4A seem to play a critical role in the pathogenesis of some autoimmune diseases, such as multiple sclerosis. In contrast, it has been shown that Sema4A and 4C have beneficial effects on allergies, and their absence can exacerbate the severity of the disease. In the case of cancer, an increase in all three of these molecules has been reported. Sema4D and 4C can contribute to tumor progression in human patients or experimental models, while the role of Sema4A has not yet been fully understood. In conclusion, semaphorins seem to be a favorable therapeutic target for autoimmune diseases and allergies. However, in cancer, studies have not yet been able to identify the exact role of semaphorins, and further studies are needed.


Assuntos
Antígenos CD/metabolismo , Autoimunidade , Hipersensibilidade/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Semaforinas/metabolismo , Antígenos CD/genética , Humanos , Hipersensibilidade/genética , Hipersensibilidade/patologia , Proteínas de Neoplasias/genética , Neoplasias/genética , Neoplasias/patologia , Semaforinas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA