Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Genet Med ; 25(1): 143-150, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36260083

RESUMO

PURPOSE: Craniofacial microsomia (CFM) represents a spectrum of craniofacial malformations, ranging from isolated microtia with or without aural atresia to underdevelopment of the mandible, maxilla, orbit, facial soft tissue, and/or facial nerve. The genetic causes of CFM remain largely unknown. METHODS: We performed genome sequencing and linkage analysis in patients and families with microtia and CFM of unknown genetic etiology. The functional consequences of damaging missense variants were evaluated through expression of wild-type and mutant proteins in vitro. RESULTS: We studied a 5-generation kindred with microtia, identifying a missense variant in FOXI3 (p.Arg236Trp) as the cause of disease (logarithm of the odds = 3.33). We subsequently identified 6 individuals from 3 additional kindreds with microtia-CFM spectrum phenotypes harboring damaging variants in FOXI3, a regulator of ectodermal and neural crest development. Missense variants in the nuclear localization sequence were identified in cases with isolated microtia with aural atresia and found to affect subcellular localization of FOXI3. Loss of function variants were found in patients with microtia and mandibular hypoplasia (CFM), suggesting dosage sensitivity of FOXI3. CONCLUSION: Damaging variants in FOXI3 are the second most frequent genetic cause of CFM, causing 1% of all cases, including 13% of familial cases in our cohort.


Assuntos
Microtia Congênita , Síndrome de Goldenhar , Micrognatismo , Humanos , Síndrome de Goldenhar/genética , Microtia Congênita/genética , Orelha/anormalidades , Face
2.
Science ; 377(6606): eabo1984, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35926050

RESUMO

Pathogenic variants in genes that cause dilated cardiomyopathy (DCM) and arrhythmogenic cardiomyopathy (ACM) convey high risks for the development of heart failure through unknown mechanisms. Using single-nucleus RNA sequencing, we characterized the transcriptome of 880,000 nuclei from 18 control and 61 failing, nonischemic human hearts with pathogenic variants in DCM and ACM genes or idiopathic disease. We performed genotype-stratified analyses of the ventricular cell lineages and transcriptional states. The resultant DCM and ACM ventricular cell atlas demonstrated distinct right and left ventricular responses, highlighting genotype-associated pathways, intercellular interactions, and differential gene expression at single-cell resolution. Together, these data illuminate both shared and distinct cellular and molecular architectures of human heart failure and suggest candidate therapeutic targets.


Assuntos
Displasia Arritmogênica Ventricular Direita , Cardiomiopatia Dilatada , Insuficiência Cardíaca , Análise de Célula Única , Transcriptoma , Displasia Arritmogênica Ventricular Direita/genética , Atlas como Assunto , Cardiomiopatia Dilatada/genética , Núcleo Celular/genética , Insuficiência Cardíaca/genética , Ventrículos do Coração , Humanos , RNA-Seq
3.
Nature ; 588(7838): 466-472, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32971526

RESUMO

Cardiovascular disease is the leading cause of death worldwide. Advanced insights into disease mechanisms and therapeutic strategies require a deeper understanding of the molecular processes involved in the healthy heart. Knowledge of the full repertoire of cardiac cells and their gene expression profiles is a fundamental first step in this endeavour. Here, using state-of-the-art analyses of large-scale single-cell and single-nucleus transcriptomes, we characterize six anatomical adult heart regions. Our results highlight the cellular heterogeneity of cardiomyocytes, pericytes and fibroblasts, and reveal distinct atrial and ventricular subsets of cells with diverse developmental origins and specialized properties. We define the complexity of the cardiac vasculature and its changes along the arterio-venous axis. In the immune compartment, we identify cardiac-resident macrophages with inflammatory and protective transcriptional signatures. Furthermore, analyses of cell-to-cell interactions highlight different networks of macrophages, fibroblasts and cardiomyocytes between atria and ventricles that are distinct from those of skeletal muscle. Our human cardiac cell atlas improves our understanding of the human heart and provides a valuable reference for future studies.


Assuntos
Miocárdio/citologia , Análise de Célula Única , Transcriptoma , Adipócitos/classificação , Adipócitos/metabolismo , Adulto , Enzima de Conversão de Angiotensina 2/análise , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Células Epiteliais/classificação , Células Epiteliais/metabolismo , Epitélio , Feminino , Fibroblastos/classificação , Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Estudo de Associação Genômica Ampla , Átrios do Coração/anatomia & histologia , Átrios do Coração/citologia , Átrios do Coração/inervação , Ventrículos do Coração/anatomia & histologia , Ventrículos do Coração/citologia , Ventrículos do Coração/inervação , Homeostase/imunologia , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Miócitos Cardíacos/classificação , Miócitos Cardíacos/metabolismo , Neurônios/classificação , Neurônios/metabolismo , Pericitos/classificação , Pericitos/metabolismo , Receptores de Coronavírus/análise , Receptores de Coronavírus/genética , Receptores de Coronavírus/metabolismo , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidade , Células Estromais/classificação , Células Estromais/metabolismo
4.
Sci Transl Med ; 11(476)2019 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-30674652

RESUMO

The mechanisms by which truncating mutations in MYBPC3 (encoding cardiac myosin-binding protein C; cMyBPC) or myosin missense mutations cause hypercontractility and poor relaxation in hypertrophic cardiomyopathy (HCM) are incompletely understood. Using genetic and biochemical approaches, we explored how depletion of cMyBPC altered sarcomere function. We demonstrated that stepwise loss of cMyBPC resulted in reciprocal augmentation of myosin contractility. Direct attenuation of myosin function, via a damaging missense variant (F764L) that causes dilated cardiomyopathy (DCM), normalized the increased contractility from cMyBPC depletion. Depletion of cMyBPC also altered dynamic myosin conformations during relaxation, enhancing the myosin state that enables ATP hydrolysis and thin filament interactions while reducing the super relaxed conformation associated with energy conservation. MYK-461, a pharmacologic inhibitor of myosin ATPase, rescued relaxation deficits and restored normal contractility in mouse and human cardiomyocytes with MYBPC3 mutations. These data define dosage-dependent effects of cMyBPC on myosin that occur across the cardiac cycle as the pathophysiologic mechanisms by which MYBPC3 truncations cause HCM. Therapeutic strategies to attenuate cMyBPC activity may rescue depressed cardiac contractility in patients with DCM, whereas inhibiting myosin by MYK-461 should benefit the substantial proportion of patients with HCM with MYBPC3 mutations.


Assuntos
Cardiomiopatia Hipertrófica/genética , Proteínas de Transporte/genética , Mutação/genética , Miosinas/metabolismo , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/metabolismo , Animais , Cardiomiopatia Hipertrófica/fisiopatologia , Modelos Animais de Doenças , Haploinsuficiência , Humanos , Camundongos , Contração Miocárdica , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Fenótipo , ortoaminobenzoatos/metabolismo
5.
Ann Thorac Surg ; 106(6): 1834-1840, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30071238

RESUMO

BACKGROUND: In the second trimester of human fetal development, a tenfold increase in fetal size occurs while cardiac valves grow and retain their function. Patterns of transcription in normally growing human aortic valves are unknown. METHODS: Discarded human aortic valve samples were collected from the second trimester, 6 from early (14, 15, 17 weeks) and 6 from late (20, 21, 22 weeks) gestation. Network analysis of RNA sequencing data identified subnetworks of significantly increasing and decreasing transcripts. Subsequent cluster analysis identified patterns of transcription through the time course. Pathway enrichment analysis determined the predominant biological processes at each interval. RESULTS: We observed phasic transcription over the time course, including an early decrease in cell proliferation and developmental genes (14 to 15 weeks). Pattern specification, shear stress, and adaptive immune genes were induced early. Cell adhesion genes were increased from 14 to 20 weeks. A phase involving cell differentiation and apoptosis (17 to 20 weeks) was followed by downregulation of endothelial-to-mesenchymal transformation genes and then by increased extracellular matrix organization and stabilization (20 to 22 weeks). CONCLUSIONS: We present a unique data set, comprehensively characterizing human valve development after valve primordia are formed, focusing on key processes displayed by normal aortic valves undergoing significant growth. We build a time course of genes and processes in second trimester fetal valve growth and observe the sequential regulation of gene clusters over time. Critical valve growth genes are potential targets for therapeutic intervention in congenital heart disease and have implications for regenerative medicine and tissue engineering.


Assuntos
Valva Aórtica/crescimento & desenvolvimento , Desenvolvimento Fetal/genética , Perfilação da Expressão Gênica , Análise de Sequência de RNA , Proteínas da Matriz Extracelular/genética , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Técnicas In Vitro
6.
Cell Rep ; 22(8): 1945-1955, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29466723

RESUMO

Sirtuin 3 (SIRT3) is a NAD+-dependent deacetylase downregulated in aging and age-associated diseases such as cancer and neurodegeneration and in high-fat diet (HFD)-induced metabolic disorders. Here, we performed a small-molecule screen and identified an unexpected metabolic vulnerability associated with SIRT3 loss. Azaserine, a glutamine analog, was the top compound that inhibited growth and proliferation of cells lacking SIRT3. Using stable isotope tracing of glutamine, we observed its increased incorporation into de novo nucleotide synthesis in SIRT3 knockout (KO) cells. Furthermore, we found that SIRT3 KO cells upregulated the diversion of glutamine into de novo nucleotide synthesis through hyperactive mTORC1 signaling. Overexpression of SIRT3 suppressed mTORC1 and growth in vivo in a xenograft tumor model of breast cancer. Thus, we have uncovered a metabolic vulnerability of cells with SIRT3 loss by using an unbiased small-molecule screen.


Assuntos
Nucleotídeos/biossíntese , Sirtuína 3/deficiência , Bibliotecas de Moléculas Pequenas/farmacologia , Sequência de Aminoácidos , Animais , Azasserina/farmacologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Glutamina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos Knockout , Camundongos Nus , Regiões Promotoras Genéticas/genética , Transdução de Sinais/efeitos dos fármacos , Sirtuína 3/metabolismo , Regulação para Cima/efeitos dos fármacos
7.
PLoS One ; 13(1): e0186945, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29360822

RESUMO

Deep nucleotide sequencing enables the unbiased, broad-spectrum detection of viruses in clinical samples without requiring an a priori hypothesis for the source of infection. However, its use in clinical research applications is limited by low cost-effectiveness given that most of the sequencing information from clinical samples is related to the human genome, which renders the analysis of viral genomes challenging. To overcome this limitation we developed ViroFind, an in-solution target-enrichment platform for virus detection and discovery in clinical samples. ViroFind comprises 165,433 viral probes that cover the genomes of 535 selected DNA and RNA viruses that infect humans or could cause zoonosis. The ViroFind probes are used in a hybridization reaction to enrich viral sequences and therefore enhance the detection of viral genomes via deep sequencing. We used ViroFind to detect and analyze all viral populations in the brain of 5 patients with progressive multifocal leukoencephalopathy (PML) and of 18 control subjects with no known neurological disease. Compared to direct deep sequencing, by using ViroFind we enriched viral sequences present in the clinical samples up to 127-fold. We discovered highly complex polyoma virus JC populations in the PML brain samples with a remarkable degree of genetic divergence among the JC virus variants of each PML brain sample. Specifically for the viral capsid protein VP1 gene, we identified 24 single nucleotide substitutions, 12 of which were associated with amino acid changes. The most frequent (4 of 5 samples, 80%) amino acid change was D66H, which is associated with enhanced tissue tropism, and hence likely a viral fitness advantage, compared to other variants. Lastly, we also detected sparse JC virus sequences in 10 of 18 (55.5%) of control samples and sparse human herpes virus 6B (HHV6B) sequences in the brain of 11 of 18 (61.1%) control subjects. In sum, ViroFind enabled the in-depth analysis of all viral genomes in PML and control brain samples and allowed us to demonstrate a high degree of JC virus genetic divergence in vivo that has been previously underappreciated. ViroFind can be used to investigate the structure of the virome with unprecedented depth in health and disease state.


Assuntos
Encéfalo/virologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Vírus JC/isolamento & purificação , Leucoencefalopatia Multifocal Progressiva/virologia , Genes Virais , Humanos , Vírus JC/genética
8.
Science ; 351(6273): 617-21, 2016 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-26912705

RESUMO

Hypertrophic cardiomyopathy (HCM) is an inherited disease of heart muscle that can be caused by mutations in sarcomere proteins. Clinical diagnosis depends on an abnormal thickening of the heart, but the earliest signs of disease are hyperdynamic contraction and impaired relaxation. Whereas some in vitro studies of power generation by mutant and wild-type sarcomere proteins are consistent with mutant sarcomeres exhibiting enhanced contractile power, others are not. We identified a small molecule, MYK-461, that reduces contractility by decreasing the adenosine triphosphatase activity of the cardiac myosin heavy chain. Here we demonstrate that early, chronic administration of MYK-461 suppresses the development of ventricular hypertrophy, cardiomyocyte disarray, and myocardial fibrosis and attenuates hypertrophic and profibrotic gene expression in mice harboring heterozygous human mutations in the myosin heavy chain. These data indicate that hyperdynamic contraction is essential for HCM pathobiology and that inhibitors of sarcomere contraction may be a valuable therapeutic approach for HCM.


Assuntos
Adenosina Trifosfatases/antagonistas & inibidores , Benzilaminas/administração & dosagem , Miosinas Cardíacas/antagonistas & inibidores , Cardiomiopatia Hipertrófica Familiar/tratamento farmacológico , Contração Miocárdica/efeitos dos fármacos , Cadeias Pesadas de Miosina/antagonistas & inibidores , Sarcômeros/efeitos dos fármacos , Uracila/análogos & derivados , Animais , Benzilaminas/química , Miosinas Cardíacas/genética , Cardiomiopatia Hipertrófica Familiar/patologia , Cardiomiopatia Hipertrófica Familiar/fisiopatologia , Células Cultivadas , Modelos Animais de Doenças , Fibrose , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/patologia , Heterozigoto , Humanos , Masculino , Camundongos , Camundongos Endogâmicos , Mutação , Miocárdio/patologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Cadeias Pesadas de Miosina/genética , Ratos , Uracila/administração & dosagem , Uracila/química
9.
Proc Natl Acad Sci U S A ; 112(29): 9046-51, 2015 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-26153423

RESUMO

Homozygous cardiac myosin binding protein C-deficient (Mybpc(t/t)) mice develop dramatic cardiac dilation shortly after birth; heart size increases almost twofold. We have investigated the mechanism of cardiac enlargement in these hearts. Throughout embryogenesis myocytes undergo cell division while maintaining the capacity to pump blood by rapidly disassembling and reforming myofibrillar components of the sarcomere throughout cell cycle progression. Shortly after birth, myocyte cell division ceases. Cardiac MYBPC is a thick filament protein that regulates sarcomere organization and rigidity. We demonstrate that many Mybpc(t/t) myocytes undergo an additional round of cell division within 10 d postbirth compared with their wild-type counterparts, leading to increased numbers of mononuclear myocytes. Short-hairpin RNA knockdown of Mybpc3 mRNA in wild-type mice similarly extended the postnatal window of myocyte proliferation. However, adult Mybpc(t/t) myocytes are unable to fully regenerate the myocardium after injury. MYBPC has unexpected inhibitory functions during postnatal myocyte cytokinesis and cell cycle progression. We suggest that human patients with homozygous MYBPC3-null mutations develop dilated cardiomyopathy, coupled with myocyte hyperplasia (increased cell number), as observed in Mybpc(t/t) mice. Human patients, with heterozygous truncating MYBPC3 mutations, like mice with similar mutations, have hypertrophic cardiomyopathy. However, the mechanism leading to hypertrophic cardiomyopathy in heterozygous MYBPC3(+/-) individuals is myocyte hypertrophy (increased cell size), whereas the mechanism leading to cardiac dilation in homozygous Mybpc3(-/-) mice is primarily myocyte hyperplasia.


Assuntos
Proteínas de Transporte/metabolismo , Citocinese , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Animais Recém-Nascidos , Aurora Quinases/metabolismo , Biomarcadores/metabolismo , Cálcio/metabolismo , Contagem de Células , Diferenciação Celular , Proliferação de Células , Dependovirus/metabolismo , Células Endoteliais/metabolismo , Regulação da Expressão Gênica , Ventrículos do Coração/metabolismo , Histonas/metabolismo , Humanos , Indóis/metabolismo , Camundongos , Modelos Biológicos , Miocárdio/citologia , Miócitos Cardíacos/citologia , Fosforilação , RNA Interferente Pequeno/metabolismo
10.
N Engl J Med ; 352(4): 362-72, 2005 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-15673802

RESUMO

BACKGROUND: Unexplained left ventricular hypertrophy often prompts the diagnosis of hypertrophic cardiomyopathy, a sarcomere-protein gene disorder. Because mutations in the gene for AMP-activated protein kinase gamma2 (PRKAG2) cause an accumulation of cardiac glycogen and left ventricular hypertrophy that mimics hypertrophic cardiomyopathy, we hypothesized that hypertrophic cardiomyopathy might also be clinically misdiagnosed in patients with other mutations in genes regulating glycogen metabolism. METHODS: Genetic analyses performed in 75 consecutive unrelated patients with hypertrophic cardiomyopathy detected 40 sarcomere-protein mutations. In the remaining 35 patients, PRKAG2, lysosome-associated membrane protein 2 (LAMP2), alpha-galactosidase (GLA), and acid alpha-1,4-glucosidase (GAA) genes were studied. RESULTS: Gene defects causing Fabry's disease (GLA) and Pompe's disease (GAA) were not found, but two LAMP2 and one PRKAG2 mutations were identified in probands with prominent hypertrophy and electrophysiological abnormalities. These results prompted the study of two additional, independent series of patients. Genetic analyses of 20 subjects with massive hypertrophy (left ventricular wall thickness, > or =30 mm) but without electrophysiological abnormalities revealed mutations in neither LAMP2 nor PRKAG2. Genetic analyses of 24 subjects with increased left ventricular wall thickness and electrocardiograms suggesting ventricular preexcitation revealed four LAMP2 and seven PRKAG2 mutations. Clinical features associated with defects in LAMP2 included male sex, severe hypertrophy, early onset (at 8 to 17 years of age), ventricular preexcitation, and asymptomatic elevations of two serum proteins. CONCLUSIONS: LAMP2 mutations typically cause multisystem glycogen-storage disease (Danon's disease) but can also present as a primary cardiomyopathy. The glycogen-storage cardiomyopathy produced by LAMP2 or PRKAG2 mutations resembles hypertrophic cardiomyopathy but is distinguished by electrophysiological abnormalities, particularly ventricular preexcitation.


Assuntos
Antígenos CD/genética , Cardiomiopatia Hipertrófica/genética , Doença de Depósito de Glicogênio/complicações , Complexos Multienzimáticos/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Quinases Ativadas por AMP , Adolescente , Adulto , Idoso , Algoritmos , Cardiomiopatia Hipertrófica/etiologia , Cardiomiopatia Hipertrófica/patologia , Cardiomiopatia Hipertrófica/fisiopatologia , Criança , Diagnóstico Diferencial , Eletrocardiografia , Doença de Fabry/genética , Feminino , Glicogênio/metabolismo , Doença de Depósito de Glicogênio/diagnóstico , Doença de Depósito de Glicogênio/genética , Doença de Depósito de Glicogênio Tipo II/complicações , Doença de Depósito de Glicogênio Tipo II/genética , Humanos , Hipertrofia Ventricular Esquerda/etiologia , Proteína 2 de Membrana Associada ao Lisossomo , Proteínas de Membrana Lisossomal , Masculino , Pessoa de Meia-Idade , Mutação , Miocárdio/patologia , Linhagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA