RESUMO
In the original publication [...].
RESUMO
Objectives: We explored whether genetically predicted increased body mass index (BMI) modulates multiple sclerosis (MS) risk through interleukin-6 (IL-6) signaling. Methods: We performed a two-sample Mendelian randomization (MR) study using multiple genome-wide association studies (GWAS) datasets for BMI, IL-6 signaling, IL-6 levels and c-reactive protein (CRP) levels as exposures and estimated their effects on risk of MS from GWAS data from the International Multiple Sclerosis Genetics Consortium (IMSGC) in 14,802 MS cases and 26,703 controls. Results: In univariable MR analyses, genetically predicted increased BMI and IL-6 signaling were associated with higher risk of MS (BMI: odds ratio (OR) = 1.30, 95% confidence interval (CI) = 1.15-1.47, p = 3.76 × 10-5; IL-6 signaling: OR = 1.51, 95% CI = 1.11-2.04, p = 0.01). Furthermore, higher BMI was associated with increased IL-6 signaling (ß = 0.37, 95% CI = 0.32,0.41, p = 1.58 × 10-65). In multivariable MR analyses, the effect of IL-6 signaling on MS risk remained after adjusting for BMI (OR = 1.36, 95% CI = 1.11-1.68, p = 0.003) and higher BMI remained associated with an increased risk for MS after adjustment for IL-6 signaling (OR = 1.16, 95% CI =1.00-1.34, p = 0.046). The proportion of the effect of BMI on MS mediated by IL-6 signaling corresponded to 43% (95% CI = 25%-54%). In contrast to IL-6 signaling, there was little evidence for an effect of serum IL-6 levels or CRP levels on risk of MS. Conclusion: In this study, we identified IL-6 signaling as a major mediator of the association between BMI and risk of MS. Further explorations of pathways underlying the association between BMI and MS are required and will, together with our findings, improve the understanding of MS biology and potentially lead to improved opportunities for targeted prevention strategies.
Assuntos
Análise da Randomização Mendeliana , Esclerose Múltipla , Índice de Massa Corporal , Estudo de Associação Genômica Ampla , Humanos , Interleucina-6/genética , Esclerose Múltipla/genética , Polimorfismo de Nucleotídeo ÚnicoRESUMO
Multiple sclerosis (MS) is a complex disease with both genetic variants and environmental factors involved in disease susceptibility. The main environmental risk factors associated with MS in observational studies include obesity, vitamin D deficiency, Epstein-Barr virus infection and smoking. As modifying these environmental and lifestyle factors may enable prevention, it is important to pinpoint causal links between these factors and MS. Leveraging genetics through the Mendelian randomization (MR) paradigm is an elegant way to inform prevention strategies in MS. In this review, we summarize MR studies regarding the impact of environmental factors on MS susceptibility, thereby paying attention to quality criteria which will aid readers in interpreting any MR studies. We draw parallels and differences with observational studies and randomized controlled trials and look forward to the challenges that such work presents going forward.
Assuntos
Infecções por Vírus Epstein-Barr , Esclerose Múltipla , Infecções por Vírus Epstein-Barr/complicações , Estudo de Associação Genômica Ampla , Herpesvirus Humano 4/genética , Humanos , Análise da Randomização Mendeliana , Esclerose Múltipla/etiologia , Esclerose Múltipla/genética , Fatores de RiscoRESUMO
Studies investigating the immunopathology of multiple sclerosis (MS) have largely focused on adaptive T and B lymphocytes. However, in recent years there has been an increased interest in the contribution of innate immune cells, amongst which the natural killer (NK) cells. Apart from their canonical role of controlling viral infections, cell stress and malignancies, NK cells are increasingly being recognized for their modulating effect on the adaptive immune system, both in health and autoimmune disease. From different lines of research there is now evidence that NK cells contribute to MS immunopathology. In this review, we provide an overview of studies that have investigated the role of NK cells in the pathogenesis of MS by use of the experimental autoimmune encephalomyelitis (EAE) animal model, MS genetics or through ex vivo and in vitro work into the immunology of MS patients. With the advent of modern hypothesis-free technologies such as single-cell transcriptomics, we are exposing an unexpected NK cell heterogeneity, increasingly blurring the boundaries between adaptive and innate immunity. We conclude that unravelling this heterogeneity, as well as the mechanistic link between innate and adaptive immune cell functions will lay the foundation for the use of NK cells as prognostic tools and therapeutic targets in MS and a myriad of other currently uncurable autoimmune disorders.
Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Animais , Linfócitos B/metabolismo , Humanos , Imunidade Inata , Células Matadoras NaturaisRESUMO
To uncover mechanisms underlying chemotherapy-induced cognitive impairment in breast cancer, we studied new biomarkers of neuroinflammation and neuronal survival. This cohort study included 74 women (47 ± 10 years) from 22 October 2017 until 20 August 2020. Nineteen chemotherapy-treated and 18 chemotherapy-naïve patients with breast cancer were assessed one month after the completion of surgery and/or chemotherapy, and 37 healthy controls were included. Assessments included neuropsychological testing, questionnaires, blood sampling for 17 inflammatory and two neuronal survival markers (neurofilament light-chain (NfL), and brain-derived neurotrophic factor (BDNF) and PET-MR neuroimaging. To investigate neuroinflammation, translocator protein (TSPO) [18F]DPA714-PET-MR was acquired for 15 participants per group, and evaluated by volume of distribution normalized to the cerebellum. Chemotherapy-treated patients showed higher TSPO expression, indicative for neuroinflammation, in the occipital and parietal lobe when compared to healthy controls or chemotherapy-naïve patients. After partial-volume correction, differences with healthy controls persisted (pFWE < 0.05). Additionally, compared to healthy- or chemotherapy-naïve controls, cognitive impairment (17-22%) and altered levels in blood markers (F ≥ 3.7, p ≤ 0.031) were found in chemotherapy-treated patients. NfL, an axonal damage marker, was particularly sensitive in differentiating groups (F = 105, p = 4.2 × 10 -21), with levels 20-fold higher in chemotherapy-treated patients. Lastly, in chemotherapy-treated patients alone, higher local TSPO expression was associated with worse cognitive performance, higher blood levels of BDNF/NfL, and decreased fiber cross-section in the corpus callosum (pFWE < 0.05). These findings suggest that increased neuroinflammation is associated with chemotherapy-related cognitive impairment in breast cancer. Additionally, NfL could be a useful biomarker to assess neurotoxic effects of anticancer chemotherapies.
RESUMO
Although fingolimod and interferon-ß are two mechanistically different multiple sclerosis (MS) treatments, they both induce B cell activating factor (BAFF) and shift the B cell pool towards a regulatory phenotype. However, whether there is a shared mechanism between both treatments in how they influence the B cell compartment remains elusive. In this study, we collected a cross-sectional study population of 112 MS patients (41 untreated, 42 interferon-ß, 29 fingolimod) and determined B cell subsets, cell-surface and RNA expression of BAFF-receptor (BAFF-R) and transmembrane activator and cyclophilin ligand interactor (TACI) as well as plasma and/or RNA levels of BAFF, BAFF splice forms and interleukin-10 (IL-10) and -35 (IL-35). We added an in vitro B cell culture with four stimulus conditions (Medium, CpG, BAFF and CpG+BAFF) for untreated and interferon-ß treated patients including measurement of intracellular IL-10 levels. Our flow experiments showed that interferon-ß and fingolimod induced BAFF protein and mRNA expression (P ≤ 3.15 x 10-4) without disproportional change in the antagonizing splice form. Protein BAFF correlated with an increase in transitional B cells (P = 5.70 x 10-6), decrease in switched B cells (P = 3.29 x 10-4), and reduction in B cell-surface BAFF-R expression (P = 2.70 x 10-10), both on TACI-positive and -negative cells. TACI and BAFF-R RNA levels remained unaltered. RNA, plasma and in vitro experiments demonstrated that BAFF was not associated with increased IL-10 and IL-35 levels. In conclusion, treatment-induced BAFF correlates with a shift towards transitional B cells which are enriched for cells with an immunoregulatory function. However, BAFF does not directly influence the expression of the immunoregulatory cytokines IL-10 and IL-35. Furthermore, the post-translational mechanism of BAFF-induced BAFF-R cell surface loss was TACI-independent. These observations put the failure of pharmaceutical anti-BAFF strategies in perspective and provide insights for targeted B cell therapies.
Assuntos
Fator Ativador de Células B/metabolismo , Subpopulações de Linfócitos B/imunologia , Cloridrato de Fingolimode/uso terapêutico , Imunossupressores/uso terapêutico , Interferon beta/uso terapêutico , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/imunologia , Células Precursoras de Linfócitos B/imunologia , Transdução de Sinais/efeitos dos fármacos , Adulto , Idoso , Fator Ativador de Células B/genética , Receptor do Fator Ativador de Células B/genética , Receptor do Fator Ativador de Células B/metabolismo , Subpopulações de Linfócitos B/efeitos dos fármacos , Células Cultivadas , Estudos Transversais , Feminino , Seguimentos , Humanos , Interleucina-10/metabolismo , Interleucinas , Masculino , Pessoa de Meia-Idade , Células Precursoras de Linfócitos B/efeitos dos fármacos , RNA Mensageiro/genética , Proteína Transmembrana Ativadora e Interagente do CAML/genética , Proteína Transmembrana Ativadora e Interagente do CAML/metabolismo , Resultado do TratamentoRESUMO
BACKGROUND: Striking changes in the demographic pattern of multiple sclerosis (MS) strongly indicate an influence of modifiable exposures, which lend themselves well to intervention. It is important to pinpoint which of the many environmental, lifestyle, and sociodemographic changes that have occurred over the past decades, such as higher smoking and obesity rates, are responsible. Mendelian randomization (MR) is an elegant tool to overcome limitations inherent to observational studies and leverage human genetics to inform prevention strategies in MS. METHODS: We use genetic variants from the largest genome-wide association study for smoking phenotypes (initiation: N = 378, heaviness: N = 55, lifetime smoking: N = 126) and body mass index (BMI, N = 656) and apply these as instrumental variables in a two-sample MR analysis to the most recent meta-analysis for MS. We adjust for the genetic correlation between smoking and BMI in a multivariable MR. RESULTS: In univariable and multivariable MR, smoking does not have an effect on MS risk nor explains part of the association between BMI and MS risk. In contrast, in both analyses each standard deviation increase in BMI, corresponding to roughly 5 kg/m2 units, confers a 30% increase in MS risk. CONCLUSION: Despite observational studies repeatedly reporting an association between smoking and increased risk for MS, MR analyses on smoking phenotypes and MS risk could not confirm a causal relationship. This is in contrast with BMI, where observational studies and MR agree on a causal contribution. The reasons for the discrepancy between observational studies and our MR study concerning smoking and MS require further investigation.
Assuntos
Análise da Randomização Mendeliana , Esclerose Múltipla , Índice de Massa Corporal , Estudo de Associação Genômica Ampla , Humanos , Esclerose Múltipla/etiologia , Esclerose Múltipla/genética , FumarRESUMO
The role of somatic variants in diseases beyond cancer is increasingly being recognized, with potential roles in autoinflammatory and autoimmune diseases. However, as mutation rates and allele fractions are lower, studies in these diseases are substantially less tolerant of false positives, and bio-informatics algorithms require high replication rates. We developed a pipeline combining two variant callers, MuTect2 and VarScan2, with technical filtering and prioritization. Our pipeline detects somatic variants with allele fractions as low as 0.5% and achieves a replication rate of >55%. Validation in an independent data set demonstrates excellent performance (sensitivity > 57%, specificity > 98%, replication rate > 80%). We applied this pipeline to the autoimmune disease multiple sclerosis (MS) as a proof-of-principle. We demonstrate that 60% of MS patients carry 2-10 exonic somatic variants in their peripheral blood T and B cells, with the vast majority (80%) occurring in T cells and variants persisting over time. Synonymous variants significantly co-occur with non-synonymous variants. Systematic characterization indicates somatic variants are enriched for being novel or very rare in public databases of germline variants and trend towards being more damaging and conserved, as reflected by higher phred-scaled combined annotation-dependent depletion (CADD) and genomic evolutionary rate profiling (GERP) scores. Our pipeline and proof-of-principle now warrant further investigation of common somatic genetic variation on top of inherited genetic variation in the context of autoimmune disease, where it may offer subtle survival advantages to immune cells and contribute to the capacity of these cells to participate in the autoimmune reaction.
Assuntos
Doenças Autoimunes/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos , Imunidade Adaptativa/genética , Adulto , Algoritmos , Alelos , Biologia Computacional/métodos , Análise Mutacional de DNA , Feminino , Variação Genética/genética , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Polimorfismo de Nucleotídeo Único/genética , Reprodutibilidade dos Testes , SoftwareRESUMO
The production of IL-10, a potent immunosuppressive cytokine, must be strictly regulated to ensure a balanced immune response. IFN-γ, a key cytokine in multiple immune processes and pathologies, is known as an inhibitor of IL-10 production by monocytes and macrophages, but also has some regulatory functions. In the present study, we explored the role of IFN-γ on Toll-like receptor (TLR)-induced IL-10 production in murine peritoneal and spleen cells and in human peripheral blood mononuclear cells. IFN-γ inhibited IL-10 production induced by TLR2, TLR3, TLR4 and TLR7/8 agonists, but stimulated IL-10 production when cells were triggered with CpG oligodeoxynucleotides, a specific TLR9 agonist. The stimulatory effect of IFN-γ on TLR9-induced IL-10 was restricted to B cells. In line with the increased IL-10, B cells stimulated with CpG and IFN-γ profoundly inhibited CD4 T cell proliferation. Further research into the mechanisms involved, revealed that the mitogen-activated protein kinases p38 and JNK are essential players in this stimulatory effect, and that the phosphatase MKP1 - an inhibitor of p38 and JNK activity - is downregulated after combined stimulation with IFN-γ and CpG. Our data may represent a novel immunoregulatory role of IFN-γ in B cells after triggering of TLR9, by stimulating IL-10 production.
Assuntos
Linfócitos B/imunologia , Ilhas de CpG/genética , Interferon gama/metabolismo , Interleucina-10/biossíntese , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Receptor Toll-Like 9/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Linfócitos T CD4-Positivos/imunologia , Proliferação de Células/genética , Células Cultivadas , Fosfatase 1 de Especificidade Dupla/biossíntese , Humanos , Interferon gama/genética , Ativação Linfocitária/genética , Sistema de Sinalização das MAP Quinases/genética , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor de Interferon alfa e beta/genética , Transdução de Sinais/imunologiaRESUMO
The increasing evidence supporting a role for B cells in the pathogenesis of multiple sclerosis prompted us to investigate the influence of known susceptibility variants on the surface expression of co-stimulatory molecules in these cells. Using flow cytometry we measured surface expression of CD40 and CD86 in B cells from 68 patients and 162 healthy controls that were genotyped for the multiple sclerosis associated single nucleotide polymorphisms (SNPs) rs4810485, which maps within the CD40 gene, and rs9282641, which maps within the CD86 gene. We found that carrying the risk allele rs4810485*T lowered the cell-surface expression of CD40 in all tested B cell subtypes (in total B cells P ≤ 5.10 × 10-5 in patients and ≤4.09 × 10-6 in controls), while carrying the risk allele rs9282641*G increased the expression of CD86, with this effect primarily seen in the naïve B cell subset (P = 0.048 in patients and 5.38 × 10-5 in controls). In concordance with these results, analysis of RNA expression demonstrated that the risk allele rs4810485*T resulted in lower total CD40 expression (P = 0.057) but with an increased proportion of alternative splice-forms leading to decoy receptors (P = 4.00 × 10-7). Finally, we also observed that the risk allele rs4810485*T was associated with decreased levels of interleukin-10 (P = 0.020), which is considered to have an immunoregulatory function downstream of CD40. Given the importance of these co-stimulatory molecules in determining the immune reaction that appears in response to antigen our data suggest that B cells might have an important antigen presentation and immunoregulatory role in the pathogenesis of multiple sclerosis.
Assuntos
Linfócitos B/metabolismo , Antígeno B7-2/genética , Antígenos CD40/genética , Predisposição Genética para Doença/genética , Esclerose Múltipla/genética , Polimorfismo de Nucleotídeo Único/genética , Linfócitos B/patologia , Correlação de Dados , Citocinas/sangue , Feminino , Regulação da Expressão Gênica/genética , Genótipo , Humanos , Interleucina-10/metabolismo , Masculino , Esclerose Múltipla/sangue , Esclerose Múltipla/imunologia , Esclerose Múltipla/patologiaRESUMO
OBJECTIVE: Systemic juvenile idiopathic arthritis (JIA) is an immunoinflammatory disease characterized by arthritis and systemic manifestations. The role of natural killer (NK) cells in the pathogenesis of systemic JIA remains unclear. The purpose of this study was to perform a comprehensive analysis of NK cell phenotype and functionality in patients with systemic JIA. METHODS: Transcriptional alterations specific to NK cells were investigated by RNA sequencing of highly purified NK cells from 6 patients with active systemic JIA and 6 age-matched healthy controls. Cytokines (NK cell-stimulating and others) were quantified in plasma samples (n = 18). NK cell phenotype and cytotoxic activity against tumor cells were determined (n = 10), together with their interferon-γ (IFNγ)-producing function (n = 8). RESULTS: NK cells from the systemic JIA patients showed an altered gene expression profile compared to cells from the healthy controls, with enrichment of immunoinflammatory pathways, increased expression of innate genes including TLR4 and S100A9, and decreased expression of immune-regulating genes such as IL10RA and GZMK. In the patients' plasma, interleukin-18 (IL-18) levels were increased, and a decreased ratio of IFNγ to IL-18 was observed. NK cells from the patients exhibited specific alterations in the balance of inhibitory and activating receptors, with decreased killer cell lectin-like receptor G1 and increased NKp44 expression. Although NK cells from the patients showed increased granzyme B expression, consistent with intact cytotoxicity and degranulation against a tumor cell line, decreased granzyme K expression in CD56bright NK cells and defective IL-18-induced IFNγ production and signaling were demonstrated. CONCLUSION: NK cells are active players in the inflammatory environment typical of systemic JIA. Although their cytotoxic function is globally intact, subtle defects in NK-related pathways, such as granzyme K expression and IL-18-driven IFNγ production, may contribute to the immunoinflammatory dysregulation in this disease.
Assuntos
Artrite Juvenil/imunologia , Granzimas , Interferon gama , Células Matadoras Naturais/fisiologia , Artrite Juvenil/genética , Células Cultivadas , Expressão Gênica , Granzimas/genética , Humanos , Interferon gama/genética , FenótipoRESUMO
Amyotrophic lateral sclerosis (ALS) is a devastating progressive neurodegenerative disease characterized by the selective death of motor neurons. Disease pathophysiology is complex and not yet fully understood. Higher gene expression of the inositol 1,4,5-trisphosphate receptor 2 gene (ITPR2), encoding the IP3 receptor 2 (IP3R2), was detected in sporadic ALS patients. Here, we demonstrate that IP3R2 gene expression was also increased in spinal cords of ALS mice. Moreover, an increase of IP3R2 expression was observed in other models of chronic and acute neurodegeneration. Upregulation of IP3R2 gene expression could be induced by lipopolysaccharide (LPS) in murine astrocytes, murine macrophages and human fibroblasts indicating that it may be a compensatory response to inflammation. Preventing this response by genetic deletion of ITPR2 from SOD1G93A mice had a dose-dependent effect on disease duration, resulting in a significantly shorter lifespan of these mice. In addition, the absence of IP3R2 led to increased innate immunity, which may contribute to the decreased survival of the SOD1G93A mice. Besides systemic inflammation, IP3R2 knockout mice also had increased IFNγ, IL-6 and IL1α expression. Altogether, our data indicate that IP3R2 protects against the negative effects of inflammation, suggesting that the increase in IP3R2 expression in ALS patients is a protective response.
Assuntos
Esclerose Lateral Amiotrófica/genética , Inflamação/genética , Receptores de Inositol 1,4,5-Trifosfato/genética , Superóxido Dismutase-1/genética , Esclerose Lateral Amiotrófica/patologia , Animais , Modelos Animais de Doenças , Humanos , Inflamação/patologia , Interferon gama/biossíntese , Interleucina-1beta/biossíntese , Interleucina-6/biossíntese , Lipopolissacarídeos , Masculino , Camundongos , Camundongos Knockout , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Medula Espinal/metabolismo , Medula Espinal/patologiaRESUMO
Immunological hallmarks of multiple sclerosis include the production of antibodies in the central nervous system, expressed as presence of oligoclonal bands and/or an increased immunoglobulin G index-the level of immunoglobulin G in the cerebrospinal fluid compared to serum. However, the underlying differences between oligoclonal band-positive and -negative patients with multiple sclerosis and reasons for variability in immunoglobulin G index are not known. To identify genetic factors influencing the variation in the antibody levels in the cerebrospinal fluid in multiple sclerosis, we have performed a genome-wide association screen in patients collected from nine countries for two traits, presence or absence of oligoclonal bands (n = 3026) and immunoglobulin G index levels (n = 938), followed by a replication in 3891 additional patients. We replicate previously suggested association signals for oligoclonal band status in the major histocompatibility complex region for the rs9271640*A-rs6457617*G haplotype, correlated with HLA-DRB1*1501, and rs34083746*G, correlated with HLA-DQA1*0301 (P comparing two haplotypes = 8.88 × 10(-16)). Furthermore, we identify a novel association signal of rs9807334, near the ELAC1/SMAD4 genes, for oligoclonal band status (P = 8.45 × 10(-7)). The previously reported association of the immunoglobulin heavy chain locus with immunoglobulin G index reaches strong evidence for association in this data set (P = 3.79 × 10(-37)). We identify two novel associations in the major histocompatibility complex region with immunoglobulin G index: the rs9271640*A-rs6457617*G haplotype (P = 1.59 × 10(-22)), shared with oligoclonal band status, and an additional independent effect of rs6457617*G (P = 3.68 × 10(-6)). Variants identified in this study account for up to 2-fold differences in the odds of being oligoclonal band positive and 7.75% of the variation in immunoglobulin G index. Both traits are associated with clinical features of disease such as female gender, age at onset and severity. This is the largest study population so far investigated for the genetic influence on antibody levels in the cerebrospinal fluid in multiple sclerosis, including 6950 patients. We confirm that genetic factors underlie these antibody levels and identify both the major histocompatibility complex and immunoglobulin heavy chain region as major determinants.
Assuntos
Variação Genética , Imunoglobulina G/líquido cefalorraquidiano , Complexo Principal de Histocompatibilidade/genética , Esclerose Múltipla/líquido cefalorraquidiano , Esclerose Múltipla/genética , Polimorfismo de Nucleotídeo Único/genética , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Europa (Continente) , Feminino , Estudos de Associação Genética , Humanos , Imunoglobulina G/sangue , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/sangue , Bandas Oligoclonais/sangue , Bandas Oligoclonais/líquido cefalorraquidiano , Índice de Gravidade de Doença , Proteína Smad4/genética , Proteínas Supressoras de Tumor/genética , Adulto JovemRESUMO
Patients with the autoinflammatory disease Tumour Necrosis Factor receptor-associated periodic syndrome (TRAPS) who suffer from demyelinating disease have been described, and one of the milder TRAPS mutations (R92Q in the TNFRSF1A gene) has been suggested as a risk factor for multiple sclerosis (MS). In a study population of 967 MS patients and 1022 controls, we replicate association [P=5×10â»4, 3% in patients versus 1% in controls, OR=2.26 (95% CI 1.41-3.61)], which appears independent of an established common risk variant in the same gene. No other non-synonymous variants in the same allele frequency range influencing risk of MS were observed.
Assuntos
Variação Genética/genética , Esclerose Múltipla/genética , Fases de Leitura Aberta/genética , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Adulto , Substituição de Aminoácidos/genética , Diagnóstico Diferencial , Febre Familiar do Mediterrâneo/diagnóstico , Febre Familiar do Mediterrâneo/genética , Humanos , Masculino , Esclerose Múltipla/diagnóstico , Fatores de Risco , Síndrome , Adulto JovemRESUMO
Multiple sclerosis is a demyelinating neurodegenerative disease with a strong genetic component. Previous genetic risk studies have failed to identify consistently linked regions or genes outside of the major histocompatibility complex on chromosome 6p. We describe allelic association of a polymorphism in the gene encoding the interleukin 7 receptor alpha chain (IL7R) as a significant risk factor for multiple sclerosis in four independent family-based or case-control data sets (overall P = 2.9 x 10(-7)). Further, the likely causal SNP, rs6897932, located within the alternatively spliced exon 6 of IL7R, has a functional effect on gene expression. The SNP influences the amount of soluble and membrane-bound isoforms of the protein by putatively disrupting an exonic splicing silencer.