Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Trauma Acute Care Surg ; 97(2S Suppl 1): S98-S104, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38745348

RESUMO

BACKGROUND: The Compensatory Reserve Metric (CRM) provides a time sensitive indicator of hemodynamic decompensation. However, its in-field utility is limited because of the size and cost-intensive nature of standard vital sign monitors or photoplethysmographic volume-clamp (PPG VC ) devices used to measure arterial waveforms. In this regard, photoplethysmographic measurements obtained from pulse oximetry may serve as a useful, portable alternative. This study aimed to validate CRM values obtained using pulse oximeter (PPG PO ). METHODS: Forty-nine healthy adults (25 females) underwent a graded lower body negative pressure (LBNP) protocol to simulate hemorrhage. Arterial waveforms were sampled using PPG PO and PPG VC . The CRM was calculated using a one-dimensional convolutional neural network. Cardiac output and stroke volume were measured using PPG VC . A brachial artery catheter was used to measure intra-arterial pressure. A three-lead electrocardiogram was used to measure heart rate. Fixed-effect linear mixed models with repeated measures were used to examine the association between CRM values and physiologic variables. Log-rank analyses were used to examine differences in shock determination during LBNP between monitored hemodynamic parameters. RESULTS: The median LBNP stage reached was 70 mm Hg (range, 45-100 mm Hg). Relative to baseline, at tolerance, there was a 47% ± 12% reduction in stroke volume, 64% ± 27% increase in heart rate, and 21% ± 7% reduction in systolic blood pressure ( p < 0.001 for all). Compensatory Reserve Metric values obtained with both PPG PO and PPG VC were associated with changes in heart rate ( p < 0.001), stroke volume ( p < 0.001), and pulse pressure ( p < 0.001). Furthermore, they provided an earlier detection of hemodynamic shock relative to the traditional metrics of shock index ( p < 0.001 for both), systolic blood pressure ( p < 0.001 for both), and heart rate ( p = 0.001 for both). CONCLUSION: The CRM obtained from PPG PO provides a valid, time-sensitized prediction of hemodynamic decompensation, opening the door to provide military medical personnel noninvasive in-field advanced capability for early detection of hemorrhage and imminent onset of shock. LEVEL OF EVIDENCE: Diagnostic Tests or Criteria; Level III.


Assuntos
Pressão Negativa da Região Corporal Inferior , Oximetria , Fotopletismografia , Humanos , Masculino , Feminino , Adulto , Oximetria/métodos , Pressão Negativa da Região Corporal Inferior/métodos , Fotopletismografia/métodos , Monitorização Fisiológica/métodos , Monitorização Fisiológica/instrumentação , Volume Sistólico/fisiologia , Frequência Cardíaca/fisiologia , Voluntários Saudáveis , Débito Cardíaco/fisiologia , Hemodinâmica/fisiologia , Adulto Jovem , Hemorragia/diagnóstico , Hemorragia/fisiopatologia , Eletrocardiografia/métodos
2.
Front Med (Lausanne) ; 10: 1240330, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37877016

RESUMO

This study aimed to characterize the safety and efficacy of DC-CIK therapy in two patients with previously treated chronic lymphocytic leukemia or peritoneal cancer, respectively. Participants had received conventional chemotherapy treatment for their specific cancers, and in addition, 1-2 treatments of DC-CIK therapy were administered to subjects over the course of 1 year. Subject A received an initial dosage of 3 intravenous infusions of DC-CIK therapy on three successive days and a repeat dosage 6 months later. Subject B received an initial dosage of 3 intravenous infusions of DC-CIK therapy on three successive days and received further chemotherapy after approximately 1 year. No treatment-related adverse events were reported, and both patients experienced favorable outcomes from the treatment, including enhanced treatment response, increased chemotherapy tolerance, and prolonged survival in comparison to typical 5-year survival rates.

3.
Sci Rep ; 12(1): 17970, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36289306

RESUMO

Respiratory epithelium in the conducting airways of the human body is one of the primary targets of SARS-CoV-2 infection, however, there is a paucity of studies describing the association between COVID-19 and physical characteristics of the conducting airways. To better understand the pathophysiology of COVID-19 on the size of larger conducting airways, we determined the luminal area of the central airways in patients with a history of COVID-19 compared to a height-matched cohort of controls using a case-control study design. Using three-dimensional reconstruction from low-dose high-resolution computed tomography, we retrospectively assessed airway luminal cross-sectional area in 114 patients with COVID-19 (66 females, 48 males) and 114 healthy, sex- and height-matched controls (66 females, 48 males). People with a history of smoking, cardiopulmonary disease, or a body mass index greater than 40 kg·m-2 were excluded. Luminal areas of seven conducting airways were analyzed, including trachea, left and right main bronchus, intermediate bronchus, left and right upper lobe, and left lower lobe. For the central conducting airways, luminal area was ~ 15% greater patients with COVID-19 compared to matched controls (p < 0.05). Among patients with COVID-19, there were generally no differences in the luminal areas of the conducting airways between hospitalized patients compared to patients who did not require COVID-19-related hospitalization. Our findings suggest that males and females with COVID-19 have pathologically larger conducting airway luminal areas than healthy, sex- and height-matched controls.


Assuntos
COVID-19 , Masculino , Feminino , Humanos , Estudos de Casos e Controles , Estudos Retrospectivos , SARS-CoV-2 , Pulmão/diagnóstico por imagem
4.
Trials ; 23(1): 401, 2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35562778

RESUMO

BACKGROUND: Mesenchymal stromal cells (MSCs) may be of benefit in ARDS due to immunomodulatory and reparative properties. This trial investigates a novel CD362 enriched umbilical cord derived MSC product (REALIST ORBCEL-C), produced to Good Manufacturing Practice standards, in patients with moderate to severe ARDS due to COVID-19 and ARDS due to other causes. METHODS: Phase 1 is a multicentre open-label dose-escalation pilot trial. Patients will receive a single infusion of REALIST ORBCEL-C (100 × 106 cells, 200 × 106 cells or 400 × 106 cells) in a 3 + 3 design. Phase 2 is a multicentre randomised, triple blind, allocation concealed placebo-controlled trial. Two cohorts of patients, with ARDS due to COVID-19 or ARDS due to other causes, will be recruited and randomised 1:1 to receive either a single infusion of REALIST ORBCEL-C (400 × 106 cells or maximal tolerated dose in phase 1) or placebo. Planned recruitment to each cohort is 60 patients. The primary safety outcome is the incidence of serious adverse events. The primary efficacy outcome is oxygenation index at day 7. The trial will be reported according to the Consolidated Standards for Reporting Trials (CONSORT 2010) statement. DISCUSSION: The development and manufacture of an advanced therapy medicinal product to Good Manufacturing Practice standards within NHS infrastructure are discussed, including challenges encountered during the early stages of trial set up. The rationale to include a separate cohort of patients with ARDS due to COVID-19 in phase 2 of the trial is outlined. TRIAL REGISTRATION: ClinicalTrials.gov NCT03042143. Registered on 3 February 2017. EudraCT Number 2017-000584-33.


Assuntos
COVID-19 , Células-Tronco Mesenquimais , Síndrome do Desconforto Respiratório , Ensaios Clínicos Fase I como Assunto , Ensaios Clínicos Fase II como Assunto , Método Duplo-Cego , Humanos , Estudos Multicêntricos como Assunto , Ensaios Clínicos Controlados Aleatórios como Assunto , Síndrome do Desconforto Respiratório/tratamento farmacológico , SARS-CoV-2 , Resultado do Tratamento
5.
Expert Rev Respir Med ; 15(3): 301-324, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33172313

RESUMO

Introduction: Mesenchymal stromal (stem) cell (MSC) therapies are emerging as a promising therapeutic intervention in patients with Acute Respiratory Distress Syndrome (ARDS) and sepsis due to their reparative, immunomodulatory, and antimicrobial properties.Areas covered: This review provides an overview of Mesenchymal stromal cells (MSCs) and their mechanisms of effect in ARDS and sepsis. The preclinical and clinical evidence to support MSC therapy in ARDS and sepsis is discussed. The potential for MSC therapy in COVID-19 ARDS is discussed with insights from respiratory viral models and early clinical reports of MSC therapy in COVID-19. Strategies to optimize the therapeutic potential of MSCs in ARDS and sepsis are considered including preconditioning, altered gene expression, and alternative cell-free MSC-derived products, such as extracellular vesicles and conditioned medium.Expert opinion: MSC products present considerable therapeutic promise for ARDS and sepsis. Preclinical investigations report significant benefits and early phase clinical studies have not highlighted safety concerns. Optimization of MSC function in preclinical models of ARDS and sepsis has enhanced their beneficial effects. MSC-derived products, as cell-free alternatives, may provide further advantages in this field. These strategies present opportunity for the clinical development of MSCs and MSC-derived products with enhanced therapeutic efficacy.


Assuntos
COVID-19/terapia , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/citologia , Pandemias , Síndrome do Desconforto Respiratório/terapia , SARS-CoV-2 , Sepse/terapia , COVID-19/epidemiologia , Comorbidade , Humanos , Síndrome do Desconforto Respiratório/epidemiologia , Sepse/epidemiologia
6.
Trials ; 21(1): 462, 2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32493473

RESUMO

OBJECTIVES: The primary objective of the study is to assess the safety of a single intravenous infusion of Mesenchymal Stromal Cells (MSCs) in patients with Acute Respiratory Distress Syndrome (ARDS) due to COVID-19. Secondary objectives are to determine the effects of MSCs on important clinical outcomes, as described below. TRIAL DESIGN: REALIST COVID 19 is a randomised, placebo-controlled, triple blinded trial. PARTICIPANTS: The study will be conducted in Intensive Care Units in hospitals across the United Kingdom. Patients with moderate to severe ARDS as defined by the Berlin definition, receiving invasive mechanical ventilation and with a diagnosis of COVID-19 based on clinical diagnosis or PCR test will be eligible. Patients will be excluded for the following reasons: more than 72 hours from the onset of ARDS; age < 16 years; patient known to be pregnant; major trauma in previous 5 days; presence of any active malignancy (other than non-melanoma skin cancer); WHO Class III or IV pulmonary hypertension; venous thromboembolism currently receiving anti-coagulation or within the past 3 months; patient receiving extracorporeal life support; severe chronic liver disease (Child-Pugh > 12); Do Not Attempt Resuscitation order in place; treatment withdrawal imminent within 24 hours; prisoners; declined consent; non-English speaking patients or those who do not adequately understand verbal or written information unless an interpreter is available; previously enrolled in the REALIST trial. INTERVENTION AND COMPARATOR: Intervention: Allogeneic donor CD362 enriched human umbilical cord derived mesenchymal stromal cells (REALIST ORBCEL-C) supplied as sterile, single-use cryopreserved cell suspension of a fixed dose of 400 x106 cells in 40ml volume, to be diluted in Plasma-Lyte 148 to a total volume of 200mls for administration. Comparator (placebo): Plasma-Lyte 148 Solution for Infusion (200mls). The cellular product (REALIST ORBCEL-C) was developed and patented by Orbsen Therapeutics. MAIN OUTCOMES: The primary safety outcome is the incidence of serious adverse events. The primary efficacy outcome is Oxygenation Index (OI) at day 7. Secondary outcomes include: OI at days 4 and 14; respiratory compliance, driving pressure and PaO2/FiO2 ratio (PF ratio) at days 4, 7 and 14; Sequential Organ Failure Assessment (SOFA) score at days 4, 7 and 14; extubation and reintubation; ventilation free days at day 28; duration of mechanical ventilation; length of ICU and hospital stay; 28-day and 90-day mortality. RANDOMISATION: After obtaining informed consent, patients will be randomised via a centralised automated 24-hour telephone or web-based randomisation system (CHaRT, Centre for Healthcare Randomised Trials, University of Aberdeen). Randomisation will be stratified by recruitment centre and by vasopressor use and patients will be allocated to REALIST ORBCEL-C or placebo control in a 1:1 ratio. BLINDING (MASKING): The investigator, treating physician, other members of the site research team and participants will be blinded. The cell therapy facility and clinical trials pharmacist will be unblinded to facilitate intervention and placebo preparation. The unblinded individuals will keep the treatment information confidential. The infusion bag will be masked at the time of preparation and will be administered via a masked infusion set. NUMBERS TO BE RANDOMISED (SAMPLE SIZE): A sample size of 60 patients with 30 patients randomised to the intervention and 30 to the control group. If possible, recruitment will continue beyond 60 patients to provide more accurate and definitive trial results. The total number of patients recruited will depend on the pandemic and be guided by the data monitoring and ethics committee (DMEC). TRIAL STATUS: REALIST Phase 1 completed in January 2020 prior to the COVID-19 pandemic. This was an open label dose escalation study of REALIST ORBCEL-C in patients with ARDS. The COVID-19 pandemic emerged as REALIST Phase 2 was planned to commence and the investigator team decided to repurpose the Phase 2 trial as a COVID-19 specific trial. This decision was discussed and approved by the Trial Steering Committee (TSC) and DMEC. Submissions were made to the Research Ethics Committee (REC) and MHRA to amend the protocol to a COVID-19 specific patient population and the protocol amendment was accepted by the REC on 27th March 2020 and MHRA on 30th March 2020 respectively. Other protocol changes in this amendment included an increase in the time of onset of ARDS from 48 to 72 hours, inclusion of clinical outcomes as secondary outcomes, the provision of an option for telephone consent, an indicative sample size and provision to continue recruitment beyond this indicative sample size. The current protocol in use is version 4.0 23.03.2020 (Additional file 1). Urgent Public Health status was awarded by the NIHR on 2 April 2020 and the trial opened to recruitment and recruited the first participant the same day. At the time of publication the trial was open to recruitment at 5 sites across the UK (Belfast Health and Social Care Trust, King's College London, Guys and St Thomas' Hospital London, Birmingham Heartlands Hospital and the Queen Elizabeth Hospital Birmingham) and 12 patients have been recruited across these sites. Additional sites are planned to open and appropriate approvals for these are being obtained. It is estimated recruitment will continue for 6 months. TRIAL REGISTRATION: ClinicalTrials.gov NCT03042143 (Registered 3 Feb 2017). EudraCT 2017-000585-33 (Registered 28 Nov 2017). FULL PROTOCOL: The full protocol (version 4.0 23.03.2020) is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest of expediting dissemination of this material, the familiar formatting has been eliminated; this Letter serves as a summary of the key elements of the full protocol. The study protocol has been reported in accordance with the Standard Protocol Items: Recommendations for Clinical Interventional Trials (SPIRIT) guidelines (Additional file 2).


Assuntos
Betacoronavirus/patogenicidade , Infecções por Coronavirus/cirurgia , Pulmão/virologia , Transplante de Células-Tronco Mesenquimais , Pneumonia Viral/cirurgia , COVID-19 , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/fisiopatologia , Infecções por Coronavirus/virologia , Humanos , Pulmão/fisiopatologia , Transplante de Células-Tronco Mesenquimais/efeitos adversos , Estudos Multicêntricos como Assunto , Pandemias , Pneumonia Viral/diagnóstico , Pneumonia Viral/fisiopatologia , Pneumonia Viral/virologia , Ensaios Clínicos Controlados Aleatórios como Assunto , Recuperação de Função Fisiológica , Respiração Artificial , SARS-CoV-2 , Índice de Gravidade de Doença , Fatores de Tempo , Transplante Homólogo , Resultado do Tratamento , Reino Unido
7.
Int J Infect Dis ; 96: 431-439, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32425638

RESUMO

As of May 17th 2020, the novel coronavirus disease 2019 (COVID-19) pandemic has caused 307,395 deaths worldwide, out of 3,917,366 cases reported to the World Health Organization. No specific treatments for reducing mortality or morbidity are yet available. Deaths from COVID-19 will continue to rise globally until effective and appropriate treatments and/or vaccines are found. In search of effective treatments, the global medical, scientific, pharma and funding communities have rapidly initiated over 500 COVID-19 clinical trials on a range of antiviral drug regimens and repurposed drugs in various combinations. A paradigm shift is underway from the current focus of drug development targeting the pathogen, to advancing cellular Host-Directed Therapies (HDTs) for tackling the aberrant host immune and inflammatory responses which underlie the pathogenesis of SARS-CoV-2 and high COVID-19 mortality rates. We focus this editorial specifically on the background to, and the rationale for, the use and evaluation of mesenchymal stromal (Stem) cells (MSCs) in treatment trials of patients with severe COVID-19 disease. Currently, the ClinicalTrials.gov and the WHO Clinical Trials Registry Platform (WHO ICTRP) report a combined 28 trials exploring the potential of MSCs or their products for treatment of COVID-19. MSCs should also be trialed for treatment of other circulating WHO priority Blueprint pathogens such as MERS-CoV which causes upto 34% mortality rates. It's about time funding agencies invested more into development MSCs per se, and also for a range of other HDTs, in combination with other therapeutic interventions. MSC therapy could turn out to be an important contribution to bringing an end to the high COVID-19 death rates and preventing long-term functional disability in those who survive disease.


Assuntos
Betacoronavirus , Infecções por Coronavirus/terapia , Transplante de Células-Tronco Mesenquimais , Pneumonia Viral/terapia , COVID-19 , Ensaios Clínicos como Assunto , Consenso , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/mortalidade , Infecções por Coronavirus/patologia , Humanos , Morbidade , Pandemias , Pneumonia Viral/imunologia , Pneumonia Viral/mortalidade , Pneumonia Viral/patologia , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA