Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Ann Biomed Eng ; 49(12): 3711-3723, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33837494

RESUMO

Ischemic mitral regurgitation (IMR) is a prevalent cardiac disease associated with substantial morbidity and mortality. Contemporary surgical treatments continue to have limited long-term success, in part due to the complex and multi-factorial nature of IMR. There is thus a need to better understand IMR etiology to guide optimal patient specific treatments. Herein, we applied our finite element-based shape-matching technique to non-invasively estimate peak systolic leaflet strains in human mitral valves (MVs) from in-vivo 3D echocardiographic images taken immediately prior to and post-annuloplasty repair. From a total of 21 MVs, we found statistically significant differences in pre-surgical MV size, shape, and deformation patterns between the with and without IMR recurrence patient groups at 6 months post-surgery. Recurrent MVs had significantly less compressive circumferential strains in the anterior commissure region compared to the recurrent MVs (p = 0.0223) and were significantly larger. A logistic regression analysis revealed that average pre-surgical circumferential leaflet strain in the Carpentier A1 region independently predicted 6-month recurrence of IMR (optimal cutoff value - 18%, p = 0.0362). Collectively, these results suggest greater disease progression in the recurrent group and underscore the highly patient-specific nature of IMR. Importantly, the ability to identify such factors pre-surgically could be used to guide optimal treatment methods to reduce post-surgical IMR recurrence.


Assuntos
Insuficiência da Valva Mitral/diagnóstico por imagem , Insuficiência da Valva Mitral/patologia , Ecocardiografia Tridimensional , Humanos , Processamento de Imagem Assistida por Computador , Insuficiência da Valva Mitral/cirurgia , Recidiva , Análise de Regressão , Sístole
2.
J Am Assoc Lab Anim Sci ; 58(5): 601-605, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31451134

RESUMO

Opiates play an important role in the control of pain associated with thoracotomy in both people and animals. However, key side effects, including sedation and respiratory depression, could limit the use of opiates in animals that are lethargic due to cardiac disease. In addition, a rare side effect-neuroexcitation resulting in pathologic behavioral changes (seizures, mania, muscle fasciculation)-after the administration of morphine or hydromorphone is well-documented in many species. In pigs, however, these drugs have been shown to stimulate an increase in normal activity. In the case presented, we describe a Yorkshire-cross pig which, after myocardial infarction surgery, went from nonresponsive to alert, responsive, and eating within 30 min of an injection of hydromorphone. This pig was not demonstrating any signs associated with pain at this time, suggesting that the positive response was due to neural stimulation. This case report is the first to describe the use of hydromorphone-a potent, pure µ opiate agonist-for its neurostimulatory effect in pigs with experimentally-induced cardiac disease.


Assuntos
Analgésicos Opioides , Hidromorfona , Infarto do Miocárdio , Dor Pós-Operatória , Suínos , Animais , Feminino , Analgésicos Opioides/administração & dosagem , Analgésicos Opioides/efeitos adversos , Analgésicos Opioides/farmacologia , Hidromorfona/administração & dosagem , Hidromorfona/efeitos adversos , Hidromorfona/farmacologia , Ciência dos Animais de Laboratório , Morfina/administração & dosagem , Morfina/efeitos adversos , Infarto do Miocárdio/cirurgia , Infarto do Miocárdio/veterinária , Medição da Dor , Dor Pós-Operatória/tratamento farmacológico , Dor Pós-Operatória/veterinária
3.
J Biomech Eng ; 2019 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-31004145

RESUMO

The mitral valve (MV) is the heart valve that regulates blood ?ow between the left atrium and left ventricle (LV). In situations where the MV fails to fully cover the left atrioventricular ori?ce during systole, the resulting regurgitation causes pulmonary congestion, leading to heart failure and/or stroke. The causes of MV insuf?ciency can be either primary (e.g. myxomatous degeneration) where the valvular tissue is organically diseased, or secondary (typically inducded by ischemic cardiomyopathy) termed ischemic mitral regurgitation (IMR), is brought on by adverse LV remodeling. IMR is present in up to 40% of patients and more than doubles the probability of cardiovascular morbidity after 3.5 years. There is now agreement that adjunctive procedures are required to treat IMR caused by lea?et tethering. However, there is no consensus regarding the best procedure. Multicenter registries and randomized trials would be necessary to prove which procedure is superior. Given the number of proposed procedures and the complexity and duration of such studies, it is highly unlikely that IMR procedure optimization will be achieved by prospective clinical trials. There is thus an urgent need for cell and tissue physiologically based quantitative assessments of MV function to better design surgical solutions and associated therapies. Novel computational approaches directed towards optimized surgical repair procedures can substantially reduce the need for such trial-and-error approaches. We present the details of our MV modeling techniques, with an emphasis on what is known and investigated at various length scales.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA