Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Neurosurg ; 138(5): 1403-1410, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36208435

RESUMO

OBJECTIVE: Electrocortical stimulation mapping (ECS) is widely used to identify essential language areas, but sentence-level processing has rarely been investigated. METHODS: While undergoing awake surgery in the dominant left hemisphere, 6 subjects were asked to comprehend sentences varying in their demands on syntactic processing. RESULTS: In all 6 subjects, stimulation of the inferior frontal gyrus disrupted comprehension of passive sentences, which critically depend on syntactic processing to correctly assign grammatical roles, without disrupting comprehension of simpler tasks. In 4 of the 6 subjects, these sites were localized to the pars opercularis. Sentence comprehension was also disrupted by stimulation of other perisylvian sites, but in a more variable manner. CONCLUSIONS: These findings suggest that there may be language regions that differentially contribute to sentence processing and which therefore are best identified using sentence-level tasks. The functional consequences of resecting these sites remain to be investigated.


Assuntos
Neoplasias Encefálicas , Compreensão , Humanos , Compreensão/fisiologia , Vigília , Mapeamento Encefálico , Idioma , Imageamento por Ressonância Magnética
2.
Brain Imaging Behav ; 16(6): 2569-2585, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35908147

RESUMO

Task-based functional MRI (tb-fMRI) represents an extremely valuable approach for the identification of language eloquent regions for presurgical mapping in patients with brain tumors. However, its routinely application is limited by patient-related factors, such as cognitive disability and difficulty in coping with long-time acquisitions, and by technical factors, such as lack of equipment availability for stimuli delivery. Resting-state fMRI (rs-fMRI) instead, allows the identification of distinct language networks in a 10-min acquisition without the need of performing active tasks and using specific equipment. Therefore, to test the feasibility of rs-fMRI as a preoperative mapping tool, we reconstructed a lexico-semantic intrinsic connectivity network (ICN) in healthy controls (HC) and in a case series of patients with gliomas and compared the organization of this language network with the one derived from tb-fMRI in the patient's group. We studied three patients with extra-frontal gliomas who underwent functional mapping with auditory verb-generation (AVG) task and rs-fMRI with a seed in the left inferior frontal gyrus (IFG). First, we identified the functional connected areas to the IFG in HC. We qualitatively compared these areas with those that showed functional activation in AVG task derived from Neurosynth meta-analysis. Last, in each patient we performed single-subject analyses both for rs- and tb-fMRI, and we evaluated the spatial overlap between the two approaches. In HC, the IFG-ICN network showed a predominant left fronto-temporal functional connectivity in regions overlapping with the AVG network derived from a meta-analysis. In two patients, rs- and tb-fMRI showed comparable patterns of activation in left fronto-temporal regions, with different levels of contralateral activations. The third patient could not accomplish the AVG task and thus it was not possible to make any comparison with the ICN. However, in this patient, task-free approach disclosed a consistent network of fronto-temporal regions as in HC, and additional parietal regions. Our preliminary findings support the value of rs-fMRI approach for presurgical mapping, particularly for identifying left fronto-temporal core language-related areas in glioma patients. In a preoperative setting, rs-fMRI approach could represent a powerful tool for the identification of eloquent language areas, especially in patients with language or cognitive impairments.


Assuntos
Glioma , Imageamento por Ressonância Magnética , Humanos , Idioma , Mapeamento Encefálico , Glioma/diagnóstico por imagem , Glioma/cirurgia , Córtex Pré-Frontal
3.
Elife ; 112022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35616532

RESUMO

Background: Neuronal- and circuit-level abnormalities of excitation and inhibition are shown to be associated with tau and amyloid-beta (Aß) in preclinical models of Alzheimer's disease (AD). These relationships remain poorly understood in patients with AD. Methods: Using empirical spectra from magnetoencephalography and computational modeling (neural mass model), we examined excitatory and inhibitory parameters of neuronal subpopulations and investigated their specific associations to regional tau and Aß, measured by positron emission tomography, in patients with AD. Results: Patients with AD showed abnormal excitatory and inhibitory time-constants and neural gains compared to age-matched controls. Increased excitatory time-constants distinctly correlated with higher tau depositions while increased inhibitory time-constants distinctly correlated with higher Aß depositions. Conclusions: Our results provide critical insights about potential mechanistic links between abnormal neural oscillations and cellular correlates of impaired excitatory and inhibitory synaptic functions associated with tau and Aß in patients with AD. Funding: This study was supported by the National Institutes of Health grants: K08AG058749 (KGR), F32AG050434-01A1 (KGR), K23 AG038357 (KAV), P50 AG023501, P01 AG19724 (BLM), P50-AG023501 (BLM and GDR), R01 AG045611 (GDR); AG034570, AG062542 (WJ); NS100440 (SSN), DC176960 (SSN), DC017091 (SSN), AG062196 (SSN); a grant from John Douglas French Alzheimer's Foundation (KAV); grants from Larry L. Hillblom Foundation: 2015-A-034-FEL (KGR), 2019-A-013-SUP (KGR); grants from the Alzheimer's Association: AARG-21-849773 (KGR); PCTRB-13-288476 (KAV), and made possible by Part the CloudTM (ETAC-09-133596); a grant from Tau Consortium (GDR and WJJ), and a gift from the S. D. Bechtel Jr. Foundation.


Assuntos
Doença de Alzheimer , Amiloidose , Amiloide , Peptídeos beta-Amiloides , Biomarcadores , Humanos , Tomografia por Emissão de Pósitrons/métodos , Proteínas tau
4.
J Neuroimaging ; 31(4): 758-772, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33878229

RESUMO

BACKGROUND AND PURPOSE: Manual segmentation of white matter (WM) bundles requires extensive training and is prohibitively labor-intensive for large-scale studies. Automated segmentation methods are necessary in order to eliminate operator dependency and to enable reproducible studies. Significant changes in the WM landscape throughout childhood require flexible methods to capture the variance across the span of brain development. METHODS: Here, we describe a novel automated segmentation tool called Cortically Constrained Shape Recognition (CCSR), which combines two complementary approaches: (1) anatomical connectivity priors based on FreeSurfer-derived regions of interest and (2) shape priors based on 3-dimensional streamline bundle atlases applied using RecoBundles. We tested the performance and repeatability of this approach by comparing volume and diffusion metrics of the main language WM tracts that were both manually and automatically segmented in a pediatric cohort acquired at the UCSF Dyslexia Center (n = 59; 25 females; average age: 11 ± 2; range: 7-14). RESULTS: The CCSR approach showed high agreement with the expert manual segmentations: across all tracts, the spatial overlap between tract volumes showed an average Dice Similarity Coefficient (DSC) of 0.76, and the fractional anisotropy (FA) on average had a Lin's Concordance Correlation Coefficient (CCC) of 0.81. The CCSR's repeatability in a subset of this cohort achieved a DSC of 0.92 on average across all tracts. CONCLUSION: This novel automated segmentation approach is a promising tool for reproducible large-scale tractography analyses in pediatric populations and particularly for the quantitative assessment of structural connections underlying various clinical presentations in neurodevelopmental disorders.


Assuntos
Neoplasias da Mama , Substância Branca , Adolescente , Anisotropia , Encéfalo/diagnóstico por imagem , Criança , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Idioma , Substância Branca/diagnóstico por imagem
5.
Neurology ; 96(5): e671-e683, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33199433

RESUMO

OBJECTIVE: To test the hypothesis that plasma total tau (t-tau) and neurofilament light chain (NfL) concentrations may have a differential role in the study of frontotemporal lobar degeneration syndromes (FTLD-S) and clinically diagnosed Alzheimer disease syndromes (AD-S), we determined their diagnostic and prognostic value in FTLD-S and AD-S and their sensitivity to pathologic diagnoses. METHODS: We measured plasma t-tau and NfL with the Simoa platform in 265 participants: 167 FTLD-S, 43 AD-S, and 55 healthy controls (HC), including 82 pathology-proven cases (50 FTLD-tau, 18 FTLD-TDP, 2 FTLD-FUS, and 12 AD) and 98 participants with amyloid PET. We compared cross-sectional and longitudinal biomarker concentrations between groups, their correlation with clinical measures of disease severity, progression, and survival, and cortical thickness. RESULTS: Plasma NfL, but not plasma t-tau, discriminated FTLD-S from HC and AD-S from HC. Both plasma NfL and t-tau were poor discriminators between FLTD-S and AD-S. In pathology-confirmed cases, plasma NfL was higher in FTLD than AD and in FTLD-TDP compared to FTLD-tau, after accounting for age and disease severity. Plasma NfL, but not plasma t-tau, predicted clinical decline and survival and correlated with regional cortical thickness in both FTLD-S and AD-S. The combination of plasma NfL with plasma t-tau did not outperform plasma NfL alone. CONCLUSION: Plasma NfL is superior to plasma t-tau for the diagnosis and prediction of clinical progression of FTLD-S and AD-S. CLASSIFICATION OF EVIDENCE: This study provides Class III evidence that plasma NfL has superior diagnostic and prognostic performance vs plasma t-tau in FTLD and AD.


Assuntos
Doença de Alzheimer/sangue , Degeneração Lobar Frontotemporal/sangue , Proteínas de Neurofilamentos/sangue , Proteínas tau/sangue , Adulto , Idoso , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Encéfalo/patologia , Estudos de Casos e Controles , Proteínas de Ligação a DNA/metabolismo , Progressão da Doença , Feminino , Degeneração Lobar Frontotemporal/diagnóstico , Degeneração Lobar Frontotemporal/diagnóstico por imagem , Degeneração Lobar Frontotemporal/patologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Tomografia por Emissão de Pósitrons , Proteína FUS de Ligação a RNA/metabolismo , Sensibilidade e Especificidade , Taxa de Sobrevida , Proteínas tau/metabolismo
6.
Front Hum Neurosci ; 14: 105, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32499685

RESUMO

Magnetoencephalographic imaging (MEGI) offers a non-invasive alternative for defining preoperative language lateralization in neurosurgery patients. MEGI indeed can be used for accurate estimation of language lateralization with a complex language task - auditory verb generation. However, since language function may vary considerably in patients with focal lesions, it is important to optimize MEGI for estimation of language function with other simpler language tasks. The goal of this study was to optimize MEGI laterality analyses for two such simpler language tasks that can have compliance from those with impaired language function: a non-word repetition (NWR) task and a picture naming (PN) task. Language lateralization results for these two tasks were compared to the verb-generation (VG) task. MEGI reconstruction parameters (regions and time windows) for NWR and PN were first defined in a presurgical training cohort by benchmarking these against laterality indices for VG. Optimized time windows and regions of interest (ROIs) for NWR and PN were determined by examining oscillations in the beta band (12-30 Hz) a marker of neural activity known to be concordant with the VG laterality index (LI). For NWR, additional ROIs include areas MTG/ITG and for both NWR and PN, the postcentral gyrus was included in analyses. Optimal time windows for NWR were defined as 650-850 ms (stimulus-locked) and -350 to -150 ms (response-locked) and for PN -450 to -250 ms (response-locked). To verify the optimal parameters defined in our training cohort for NWR and PN, we examined an independent validation cohort (n = 30 for NWR, n = 28 for PN) and found high concordance between VG laterality and PN laterality (82%) and between VG laterality and NWR laterality (87%). Finally, in a test cohort (n = 8) that underwent both the intracarotid amobarbital procedure (IAP) test and MEG for VG, NWR, and PN, we identified excellent concordance (100%) with IAP for VG + NWR + PN composite LI, high concordance for PN alone (87.5%), and moderate concordance for NWR alone (66.7%). These findings provide task options for non-invasive language mapping with MEGI that can be calibrated for language abilities of individual patients. Results also demonstrate that more accurate estimates can be obtained by combining laterality estimates obtained from multiple tasks. MEGI.

7.
Front Neurosci ; 14: 225, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32296301

RESUMO

BACKGROUND: MR Tractography enables non-invasive preoperative depiction of language subcortical tracts, which is crucial for the presurgical work-up of brain tumors; however, it cannot evaluate the exact function of the fibers. PURPOSE: A systematic pipeline was developed to combine tractography reconstruction of language fiber bundles, based on anatomical landmarks (Anatomical-T), with language fMRI cortical activations. A fMRI-targeted Tractography (fMRI-T) was thus obtained, depicting the subsets of the anatomical tracts whose endpoints are located inside a fMRI activation. We hypothesized that fMRI-T could provide additional functional information regarding the subcortical structures, better reflecting the eloquent white matter structures identified intraoperatively. METHODS: Both Anatomical-T and fMRI-T of language fiber tracts were performed on 16 controls and preoperatively on 16 patients with left-hemisphere brain tumors, using a q-ball residual bootstrap algorithm based on High Angular Resolution Diffusion Imaging (HARDI) datasets (b = 3000 s/mm2; 60 directions); fMRI ROIs were obtained using picture naming, verbal fluency, and auditory verb generation tasks. In healthy controls, normalized MNI atlases of fMRI-T and Anatomical-T were obtained. In patients, the surgical resection of the tumor was pursued by identifying eloquent structures with intraoperative direct electrical stimulation mapping and extending surgery to the functional boundaries. Post-surgical MRI allowed to identify Anatomical-T and fMRI-T non-eloquent portions removed during the procedure. RESULTS: MNI Atlases showed that fMRI-T is a subset of Anatomical-T, and that different task-specific fMRI-T involve both shared subsets and task-specific subsets - e.g., verbal fluency fMRI-T strongly involves dorsal frontal tracts, consistently with the phonogical-articulatory features of this task. A quantitative analysis in patients revealed that Anatomical-T removed portions of AF-SLF and IFOF were significantly greater than verbal fluency fMRI-T ones, suggesting that fMRI-T is a more specific approach. In addition, qualitative analyses showed that fMRI-T AF-SLF and IFOF predict the exact functional limits of resection with increased specificity when compared to Anatomical-T counterparts, especially the superior frontal portion of IFOF, in a subcohort of patients. CONCLUSION: These results suggest that performing fMRI-T in addition to the 'classic' Anatomical-T may be useful in a preoperative setting to identify the 'high-risk subsets' that should be spared during the surgical procedure.

8.
Front Neurol ; 11: 616764, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33447252

RESUMO

Aphasia classifications and specialized language batteries differ across the fields of neurodegenerative disorders and lesional brain injuries, resulting in difficult comparisons of language deficits across etiologies. In this study, we present a simplified framework, in which a widely-used aphasia battery captures clinical clusters across disease etiologies and provides a quantitative and visual method to characterize and track patients over time. The framework is used to evaluate populations representing three disease etiologies: stroke, primary progressive aphasia (PPA), and post-operative aphasia. A total of 330 patients across three populations with cerebral injury leading to aphasia were investigated, including 76 patients with stroke, 107 patients meeting criteria for PPA, and 147 patients following left hemispheric resective surgery. Western Aphasia Battery (WAB) measures (Information Content, Fluency, answering Yes/No questions, Auditory Word Recognition, Sequential Commands, and Repetition) were collected across the three populations and analyzed to develop a multi-dimensional aphasia model using dimensionality reduction techniques. Two orthogonal dimensions were found to explain 87% of the variance across aphasia phenotypes and three disease etiologies. The first dimension reflects shared weighting across aphasia subscores and correlated with aphasia severity. The second dimension incorporates fluency and comprehension, thereby separating Wernicke's from Broca's aphasia, and the non-fluent/agrammatic from semantic PPA variants. Clusters representing clinical classifications, including late PPA presentations, were preserved within the two-dimensional space. Early PPA presentations were not classifiable, as specialized batteries are needed for phenotyping. Longitudinal data was further used to visualize the trajectory of aphasias during recovery or disease progression, including the rapid recovery of post-operative aphasic patients. This method has implications for the conceptualization of aphasia as a spectrum disorder across different disease etiology and may serve as a framework to track the trajectories of aphasia progression and recovery.

9.
J Neurol Neurosurg Psychiatry ; 84(9): 956-62, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23543794

RESUMO

BACKGROUND: The aetiology and pathogenesis of non-genetic forms of frontotemporal dementia (FTD) is unknown and even with the genetic forms of FTD, pathogenesis remains elusive. Given the association between systemic inflammation and other neurodegenerative processes, links between autoimmunity and FTD need to be explored. OBJECTIVE: To describe the prevalence of systemic autoimmune disease in semantic variant primary progressive aphasia (svPPA), a clinical cohort, and in progranulin (PGRN) mutation carriers compared with neurologically healthy normal controls (NC) and Alzheimer's disease (AD) as dementia controls. DESIGN: Case control. SETTING: Academic medical centres. PARTICIPANTS: 129 svPPA, 39 PGRN, 186 NC and 158 AD patients underwent chart review for autoimmune conditions. A large subset of svPPA, PGRN and NC cohorts underwent serum analysis for tumour necrosis factor α (TNF-α) levels. OUTCOME MEASURES: χ(2) Comparison of autoimmune prevalence and follow-up logistic regression. RESULTS: There was a significantly increased risk of autoimmune disorders clustered around inflammatory arthritides, cutaneous disorders and gastrointestinal conditions in the svPPA and PGRN cohorts. Elevated TNF-α levels were observed in svPPA and PGRN compared with NC. CONCLUSIONS: svPPA and PGRN are associated with increased prevalence of specific and related autoimmune diseases compared with NC and AD. These findings suggest a unique pattern of systemic inflammation in svPPA and PGRN and open new research avenues for understanding and treating disorders associated with underlying transactive response DNA-binding protein 43 aggregation.


Assuntos
Doenças Autoimunes/patologia , Degeneração Lobar Frontotemporal/patologia , Proteinopatias TDP-43/patologia , Idoso , Doença de Alzheimer/patologia , Afasia Primária Progressiva/patologia , Doenças Autoimunes/epidemiologia , Doenças Autoimunes/psicologia , Estudos de Coortes , Escolaridade , Feminino , Degeneração Lobar Frontotemporal/epidemiologia , Degeneração Lobar Frontotemporal/psicologia , Humanos , Inflamação/patologia , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Mutação/fisiologia , Testes Neuropsicológicos , Prevalência , Progranulinas , Escalas de Graduação Psiquiátrica , Proteinopatias TDP-43/epidemiologia , Fator de Necrose Tumoral alfa/metabolismo
10.
Behav Neurol ; 26(1-2): 95-106, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-22713404

RESUMO

The role of biomarkers in predicting pathological findings in the frontotemporal dementia (FTD) clinical spectrum disorders is still being explored. We present comprehensive, prospective longitudinal data for a 66 year old, right-handed female who met current criteria for the nonfluent/agrammatic variant of primary progressive aphasia (nfvPPA). She first presented with a 3-year history of progressive speech and language impairment mainly characterized by severe apraxia of speech. Neuropsychological and general motor functions remained relatively spared throughout the clinical course. Voxel-based morphometry (VBM) showed selective cortical atrophy of the left posterior inferior frontal gyrus (IFG) and underlying insula that worsened over time, extending along the left premotor strip. Five years after her first evaluation, she developed mild memory impairment and underwent PET-FDG and PiB scans that showed left frontal hypometabolism and cortical amyloidosis. Three years later (11 years from first symptom), post-mortem histopathological evaluation revealed Pick's disease, with severe degeneration of left IFG, mid-insula, and precentral gyrus. Alzheimer's disease (AD) (CERAD frequent/Braak Stage V) was also detected. This patient demonstrates that biomarkers indicating brain amyloidosis should not be considered conclusive evidence that AD pathology accounts for a typical FTD clinical/anatomical syndrome.


Assuntos
Amiloidose/patologia , Lobo Frontal/patologia , Neuroimagem Funcional/psicologia , Doença de Pick/patologia , Idoso , Doença de Alzheimer/complicações , Doença de Alzheimer/patologia , Amiloidose/complicações , Amiloidose/diagnóstico por imagem , Compostos de Anilina , Radioisótopos de Carbono , Progressão da Doença , Feminino , Radioisótopos de Flúor , Fluordesoxiglucose F18 , Lobo Frontal/diagnóstico por imagem , Neuroimagem Funcional/métodos , Humanos , Imageamento por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/psicologia , Testes Neuropsicológicos/estatística & dados numéricos , Doença de Pick/complicações , Tomografia por Emissão de Pósitrons/métodos , Tomografia por Emissão de Pósitrons/psicologia , Afasia Primária Progressiva não Fluente/complicações , Afasia Primária Progressiva não Fluente/diagnóstico por imagem , Afasia Primária Progressiva não Fluente/patologia , Tiazóis
11.
Ann Neurol ; 64(4): 388-401, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18991338

RESUMO

OBJECTIVE: Alzheimer's disease (AD) is found at autopsy in up to one third of patients with primary progressive aphasia (PPA), but clinical features that predict AD pathology in PPA are not well defined. We studied the relationships between language presentation, Abeta amyloidosis, and glucose metabolism in three PPA variants using [11C]-Pittsburgh compound B ([11C]PIB) and [18F]-labeled fluorodeoxyglucose positron emission tomography ([18F]FDG-PET). METHODS: Patients meeting PPA criteria (N = 15) were classified as logopenic aphasia (LPA), progressive nonfluent aphasia (PNFA), or semantic dementia (SD) based on language testing. [11C]PIB distribution volume ratios were calculated using Logan graphical analysis (cerebellar reference). [18F]FDG images were normalized to pons. Partial volume correction was applied. RESULTS: Elevated cortical PIB (by visual inspection) was more common in LPA (4/4 patients) than in PNFA (1/6) and SD (1/5) (p < 0.02). In PIB-positive PPA, PIB uptake was diffuse and indistinguishable from the pattern in matched AD patients (n = 10). FDG patterns were focal and varied by PPA subtype, with left temporoparietal hypometabolism in LPA, left frontal hypometabolism in PNFA, and left anterior temporal hypometabolism in SD. FDG uptake was significant asymmetric (favoring left hypometabolism) in PPA (p < 0.005) but not in AD. INTERPRETATION: LPA is associated with Abeta amyloidosis, suggesting that subclassification of PPA based on language features can help predict the likelihood of AD pathology. Language phenotype in PPA is closely related to metabolic changes that are focal and anatomically distinct between subtypes, but not to amyloid deposition patterns that are diffuse and similar to AD.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Afasia Primária Progressiva/classificação , Afasia Primária Progressiva/metabolismo , Glucose/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/metabolismo , Análise de Variância , Compostos de Anilina/metabolismo , Afasia Primária Progressiva/diagnóstico por imagem , Isótopos de Carbono/metabolismo , Demência/diagnóstico por imagem , Demência/metabolismo , Feminino , Fluordesoxiglucose F18/metabolismo , Humanos , Processamento de Imagem Assistida por Computador , Idioma , Testes de Linguagem , Masculino , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons/métodos , Tiazóis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA