Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
1.
J Clin Invest ; 134(16)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38885295

RESUMO

IgG4-related disease (IgG4-RD) is a systemic immune-mediated fibroinflammatory disease whose pathomechanisms remain poorly understood. Here, we identified gene variants in familial IgG4-RD and determined their functional consequences. All 3 affected members of the family shared variants of the transcription factor IKAROS, encoded by IKZF1, and the E3 ubiquitin ligase UBR4. The IKAROS variant increased binding to the FYN promoter, resulting in higher transcription of FYN in T cells. The UBR4 variant prevented the lysosomal degradation of the phosphatase CD45. In the presence of elevated FYN, CD45 functioned as a positive regulatory loop, lowering the threshold for T cell activation. Consequently, T cells from the affected family members were hyperresponsive to stimulation. When transduced with a low-avidity, autoreactive T cell receptor, their T cells responded to the autoantigenic peptide. In parallel, high expression of FYN in T cells biased their differentiation toward Th2 polarization by stabilizing the transcription factor JunB. This bias was consistent with the frequent atopic manifestations in patients with IgG4-RD, including the affected family members in the present study. Building on the functional consequences of these 2 variants, we propose a disease model that is not only instructive for IgG4-RD but also for atopic diseases and autoimmune diseases associated with an IKZF1 risk haplotype.


Assuntos
Autoimunidade , Fator de Transcrição Ikaros , Células Th2 , Ubiquitina-Proteína Ligases , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Autoimunidade/genética , Fator de Transcrição Ikaros/genética , Fator de Transcrição Ikaros/imunologia , Doença Relacionada a Imunoglobulina G4/genética , Doença Relacionada a Imunoglobulina G4/imunologia , Doença Relacionada a Imunoglobulina G4/patologia , Linhagem , Proteínas Proto-Oncogênicas c-fyn/genética , Proteínas Proto-Oncogênicas c-fyn/imunologia , Células Th2/imunologia , Células Th2/patologia , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/imunologia
2.
Best Pract Res Clin Rheumatol ; 38(2): 101943, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38599937

RESUMO

Giant cell arteritis (GCA) is a prototypic autoimmune disease with a highly selective tissue tropism for medium and large arteries. Extravascular GCA manifests with intense systemic inflammation and polymyalgia rheumatica; vascular GCA results in vessel wall damage and stenosis, causing tissue ischemia. Typical granulomatous infiltrates in affected arteries are composed of CD4+ T cells and hyperactivated macrophages, signifying the involvement of the innate and adaptive immune system. Lesional CD4+ T cells undergo antigen-dependent clonal expansion, but antigen-nonspecific pathways ultimately control the intensity and duration of pathogenic immunity. Patient-derived CD4+ T cells receive strong co-stimulatory signals through the NOTCH1 receptor and the CD28/CD80-CD86 pathway. In parallel, co-inhibitory signals, designed to dampen overshooting T cell immunity, are defective, leaving CD4+ T cells unopposed and capable of supporting long-lasting and inappropriate immune responses. Based on recent data, two inhibitory checkpoints are defective in GCA: the Programmed death-1 (PD-1)/Programmed cell death ligand 1 (PD-L1) checkpoint and the CD96/CD155 checkpoint, giving rise to the "lost inhibition concept". Subcellular and molecular analysis has demonstrated trapping of the checkpoint ligands in the endoplasmic reticulum, creating PD-L1low CD155low antigen-presenting cells. Uninhibited CD4+ T cells expand, release copious amounts of the cytokine Interleukin (IL)-9, and differentiate into long-lived effector memory cells. These data place GCA and cancer on opposite ends of the co-inhibition spectrum, with cancer patients developing immune paralysis due to excessive inhibitory checkpoints and GCA patients developing autoimmunity due to nonfunctional inhibitory checkpoints.


Assuntos
Arterite de Células Gigantes , Humanos , Arterite de Células Gigantes/imunologia , Linfócitos T CD4-Positivos/imunologia , Doenças Autoimunes/imunologia , Receptor de Morte Celular Programada 1/imunologia , Antígeno B7-H1/imunologia , Proteínas de Checkpoint Imunológico/imunologia
3.
Sci Transl Med ; 15(712): eadh0380, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37672564

RESUMO

Autoimmune vasculitis of the medium and large elastic arteries can cause blindness, stroke, aortic arch syndrome, and aortic aneurysm. The disease is often refractory to immunosuppressive therapy and progresses over decades as smoldering aortitis. How the granulomatous infiltrates in the vessel wall are maintained and how tissue-infiltrating T cells and macrophages are replenished are unknown. Single-cell and whole-tissue transcriptomic studies of immune cell populations in vasculitic arteries identified a CD4+ T cell population with stem cell-like features. CD4+ T cells supplying the tissue-infiltrating and tissue-damaging effector T cells survived in tertiary lymphoid structures around adventitial vasa vasora, expressed the transcription factor T cell factor 1 (TCF1), had high proliferative potential, and gave rise to two effector populations, Eomesodermin (EOMES)+ cytotoxic T cells and B cell lymphoma 6 (BCL6)+ T follicular helper-like cells. TCF1hiCD4+ T cells expressing the interleukin 7 receptor (IL-7R) sustained vasculitis in serial transplantation experiments. Thus, TCF1hiCD4+ T cells function as disease stem cells and promote chronicity and autonomy of autoimmune tissue inflammation. Remission-inducing therapies will require targeting stem-like CD4+ T cells instead of only effector T cells.


Assuntos
Estruturas Linfoides Terciárias , Vasculite , Humanos , Artérias , Inflamação , Linfócitos T CD4-Positivos
4.
Semin Immunol ; 69: 101814, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37542986

RESUMO

Evidence is emerging that the process of immune aging is a mechanism leading to autoimmunity. Over lifetime, the immune system adapts to profound changes in hematopoiesis and lymphogenesis, and progressively restructures in face of an ever-expanding exposome. Older adults fail to generate adequate immune responses against microbial infections and tumors, but accumulate aged T cells, B cells and myeloid cells. Age-associated B cells are highly efficient in autoantibody production. T-cell aging promotes the accrual of end-differentiated effector T cells with potent cytotoxic and pro-inflammatory abilities and myeloid cell aging supports a low grade, sterile and chronic inflammatory state (inflammaging). In pre-disposed individuals, immune aging can lead to frank autoimmune disease, manifesting with chronic inflammation and irreversible tissue damage. Emerging data support the concept that autoimmunity results from aging-induced failure of fundamental cellular processes in immune effector cells: genomic instability, loss of mitochondrial fitness, failing proteostasis, dwindling lysosomal degradation and inefficient autophagy. Here, we have reviewed the evidence that malfunctional mitochondria, disabled lysosomes and stressed endoplasmic reticula induce pathogenic T cells and macrophages that drive two autoimmune diseases, rheumatoid arthritis (RA) and giant cell arteritis (GCA). Recognizing immune aging as a risk factor for autoimmunity will open new avenues of immunomodulatory therapy, including the repair of malfunctioning mitochondria and lysosomes.


Assuntos
Artrite Reumatoide , Doenças Autoimunes , Humanos , Idoso , Envelhecimento , Senescência Celular/fisiologia , Linfócitos T , Inflamação
5.
Sci Transl Med ; 15(699): eadg7291, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37285401

RESUMO

Harnessing the immunogenic potential of senescent cells may be a viable but context-dependent opportunity to boost antitumor immunity.


Assuntos
Senescência Celular , Imunidade , Neoplasias , Neoplasias/imunologia
6.
Cell Rep ; 42(3): 112195, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36884349

RESUMO

Naive CD4+ T cells are more resistant to age-related loss than naive CD8+ T cells, suggesting mechanisms that preferentially protect naive CD4+ T cells during aging. Here, we show that TRIB2 is more abundant in naive CD4+ than CD8+ T cells and counteracts quiescence exit by suppressing AKT activation. TRIB2 deficiency increases AKT activity and accelerates proliferation and differentiation in response to interleukin-7 (IL-7) in humans and during lymphopenia in mice. TRIB2 transcription is controlled by the lineage-determining transcription factors ThPOK and RUNX3. Ablation of Zbtb7b (encoding ThPOK) and Cbfb (obligatory RUNT cofactor) attenuates the difference in lymphopenia-induced proliferation between naive CD4+ and CD8+ cells. In older adults, ThPOK and TRIB2 expression wanes in naive CD4+ T cells, causing loss of naivety. These findings assign TRIB2 a key role in regulating T cell homeostasis and provide a model to explain the lesser resilience of CD8+ T cells to undergo changes with age.


Assuntos
Linfócitos T CD8-Positivos , Linfopenia , Idoso , Animais , Humanos , Camundongos , Envelhecimento , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Diferenciação Celular , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Homeostase , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fatores de Transcrição/metabolismo
7.
Circ Res ; 132(2): 238-250, 2023 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-36656970

RESUMO

Giant cell arteritis is an autoimmune disease of medium and large arteries, characterized by granulomatous inflammation of the three-layered vessel wall that results in vaso-occlusion, wall dissection, and aneurysm formation. The immunopathogenesis of giant cell arteritis is an accumulative process in which a prolonged asymptomatic period is followed by uncontrolled innate immunity, a breakdown in self-tolerance, the transition of autoimmunity from the periphery into the vessel wall and, eventually, the progressive evolution of vessel wall inflammation. Each of the steps in pathogenesis corresponds to specific immuno-phenotypes that provide mechanistic insights into how the immune system attacks and damages blood vessels. Clinically evident disease begins with inappropriate activation of myeloid cells triggering the release of hepatic acute phase proteins and inducing extravascular manifestations, such as muscle pains and stiffness diagnosed as polymyalgia rheumatica. Loss of self-tolerance in the adaptive immune system is linked to aberrant signaling in the NOTCH pathway, leading to expansion of NOTCH1+CD4+ T cells and the functional decline of NOTCH4+ T regulatory cells (Checkpoint 1). A defect in the endothelial cell barrier of adventitial vasa vasorum networks marks Checkpoint 2; the invasion of monocytes, macrophages and T cells into the arterial wall. Due to the failure of the immuno-inhibitory PD-1 (programmed cell death protein 1)/PD-L1 (programmed cell death ligand 1) pathway, wall-infiltrating immune cells arrive in a permissive tissues microenvironment, where multiple T cell effector lineages thrive, shift toward high glycolytic activity, and support the development of tissue-damaging macrophages, including multinucleated giant cells (Checkpoint 3). Eventually, the vascular lesions are occupied by self-renewing T cells that provide autonomy to the disease process and limit the therapeutic effectiveness of currently used immunosuppressants. The multi-step process deviating protective to pathogenic immunity offers an array of interception points that provide opportunities for the prevention and therapeutic management of this devastating autoimmune disease.


Assuntos
Arterite de Células Gigantes , Humanos , Inflamação/metabolismo , Artérias/metabolismo , Imunidade Inata , Células Gigantes/metabolismo
8.
Clin Exp Immunol ; 211(3): 208-223, 2023 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-36420636

RESUMO

Mitochondria are the controllers of cell metabolism and are recognized as decision makers in cell death pathways, organizers of cytoplasmic signaling networks, managers of cellular stress responses, and regulators of nuclear gene expression. Cells of the immune system are particularly dependent on mitochondrial resources, as they must swiftly respond to danger signals with activation, trafficking, migration, and generation of daughter cells. Analogously, faulty immune responses that lead to autoimmunity and tissue inflammation rely on mitochondria to supply energy, cell building blocks and metabolic intermediates. Emerging data endorse the concept that mitochondrial fitness, and the lack of it, is of particular relevance in the autoimmune disease rheumatoid arthritis (RA) where deviations of bioenergetic and biosynthetic flux affect T cells during early and late stages of disease. During early stages of RA, mitochondrial deficiency allows naïve RA T cells to lose self-tolerance, biasing fundamental choices of the immune system toward immune-mediated tissue damage and away from host protection. During late stages of RA, mitochondrial abnormalities shape the response patterns of RA effector T cells engaged in the inflammatory lesions, enabling chronicity of tissue damage and tissue remodeling. In the inflamed joint, autoreactive T cells partner with metabolically reprogrammed tissue macrophages that specialize in antigen-presentation and survive by adapting to the glucose-deplete tissue microenvironment. Here, we summarize recent data on dysfunctional mitochondria and mitochondria-derived signals relevant in the RA disease process that offer novel opportunities to deter autoimmune tissue inflammation by metabolic interference.


Assuntos
Artrite Reumatoide , Humanos , Linfócitos T , Inflamação/metabolismo , Autoimunidade , Mitocôndrias
9.
J Autoimmun ; 137: 102947, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36357240

RESUMO

Immune aging is a complex process rendering the host susceptible to cancer, infection, and insufficient tissue repair. Many autoimmune diseases preferentially occur during the second half of life, counterintuitive to the concept of excess adaptive immunity driving immune-mediated tissue damage. T cells are particularly susceptible to aging-imposed changes, as they are under extreme proliferative pressure to fulfill the demands of clonal expansion and of homeostatic T cell repopulation. T cells in older adults have a footprint of genetic and epigenetic changes, lack mitochondrial fitness, and fail to maintain proteostasis, diverging them from host protection to host injury. Here, we review recent progress in understanding how the human T-cell system ages and the evidence detailing how T cell aging contributes to autoimmune conditions. T cell aging is now recognized as a risk determinant in two prototypic autoimmune syndromes; rheumatoid arthritis and giant cell arteritis. The emerging concept adds susceptibility to autoimmune and autoinflammatory disease to the spectrum of aging-imposed adaptations and opens new opportunities for immunomodulatory therapy by restoring the functional intactness of aging T cells.


Assuntos
Doenças Autoimunes , Autoimunidade , Humanos , Idoso , Autoimunidade/fisiologia , Linfócitos T , Envelhecimento , Senescência Celular , Fatores de Risco
10.
Nature ; 610(7930): 173-181, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36171288

RESUMO

Combination therapy with PD-1 blockade and IL-2 is highly effective during chronic lymphocytic choriomeningitis virus infection1. Here we examine the underlying basis for this synergy. We show that PD-1 + IL-2 combination therapy, in contrast to PD-1 monotherapy, substantially changes the differentiation program of the PD-1+TCF1+ stem-like CD8+ T cells and results in the generation of transcriptionally and epigenetically distinct effector CD8+ T cells that resemble highly functional effector CD8+ T cells seen after an acute viral infection. The generation of these qualitatively superior CD8+ T cells that mediate viral control underlies the synergy between PD-1 and IL-2. Our results show that the PD-1+TCF1+ stem-like CD8+ T cells, also referred to as precursors of exhausted CD8+ T cells, are not fate-locked into the exhaustion program and their differentiation trajectory can be changed by IL-2 signals. These virus-specific effector CD8+ T cells emerging from the stem-like CD8+ T cells after combination therapy expressed increased levels of the high-affinity IL-2 trimeric (CD25-CD122-CD132) receptor. This was not seen after PD-1 blockade alone. Finally, we show that CD25 engagement with IL-2 has an important role in the observed synergy between IL-2 cytokine and PD-1 blockade. Either blocking CD25 with an antibody or using a mutated version of IL-2 that does not bind to CD25 but still binds to CD122 and CD132 almost completely abrogated the synergistic effects observed after PD-1 + IL-2 combination therapy. There is considerable interest in PD-1 + IL-2 combination therapy for patients with cancer2,3, and our fundamental studies defining the underlying mechanisms of how IL-2 synergizes with PD-1 blockade should inform these human translational studies.


Assuntos
Linfócitos T CD8-Positivos , Interleucina-2 , Receptor de Morte Celular Programada 1 , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Diferenciação Celular/efeitos dos fármacos , Quimioterapia Combinada , Humanos , Subunidade gama Comum de Receptores de Interleucina , Interleucina-2/imunologia , Interleucina-2/farmacologia , Interleucina-2/uso terapêutico , Subunidade alfa de Receptor de Interleucina-2 , Subunidade beta de Receptor de Interleucina-2 , Coriomeningite Linfocítica/tratamento farmacológico , Coriomeningite Linfocítica/imunologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Fator 1 de Transcrição de Linfócitos T
11.
Front Aging ; 3: 867950, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35821833

RESUMO

The aging process causes profound restructuring of the host immune system, typically associated with declining host protection against cancer and infection. In the case of T cells, aging leads to the accumulation of a diverse set of T-cell aging-associated phenotypes (TASP), some of which have been implicated in driving tissue inflammation in autoimmune diseases. T cell aging as a risk determinant for autoimmunity is exemplified in two classical autoimmune conditions: rheumatoid arthritis (RA), a disease predominantly affecting postmenopausal women, and giant cell arteritis (GCA), an inflammatory vasculopathy exclusively occurring during the 6th-9th decade of life. Pathogenic T cells in RA emerge as a consequence of premature immune aging. They have shortening and fragility of telomeric DNA ends and instability of mitochondrial DNA. As a result, they produce a distinct profile of metabolites, disproportionally expand their endoplasmic reticulum (ER) membranes and release excess amounts of pro-inflammatory effector cytokines. Characteristically, they are tissue invasive, activate the inflammasome and die a pyroptotic death. Patients with GCA expand pathogenic CD4+ T cells due to aberrant expression of the co-stimulatory receptor NOTCH1 and the failure of the PD-1/PD-L1 immune checkpoint. In addition, GCA patients lose anti-inflammatory Treg cells, promoting tissue-destructive granulomatous vasculitis. In summary, emerging data identify T cell aging as a risk factor for autoimmune disease and directly link TASPs to the breakdown of T cell tolerance and T-cell-induced tissue inflammation.

12.
JCI Insight ; 7(12)2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35730568

RESUMO

The ectonucleotidase CD39 functions as a checkpoint in purinergic signaling on effector T cells. By depleting eATP and initiating the generation of adenosine, it impairs memory cell development and contributes to T cell exhaustion, thereby causing defective tumor immunity and deficient T cell responses in older adults who have increased CD39 expression. Tuning enzymatic activity of CD39 and targeting the transcriptional regulation of ENTPD1 can be used to modulate purinergic signaling. Here, we describe that STAT6 phosphorylation downstream of IL-4 signaling represses CD39 expression on activated T cells by inducing a transcription factor network including GATA3, GFI1, and YY1. GATA3 suppresses ENTPD1 transcription through prevention of RUNX3 recruitment to the ENTPD1 promoter. Conversely, pharmacological STAT6 inhibition decreases T cell effector functions via increased CD39 expression, resulting in the defective signaling of P2X receptors by ATP and stimulation of A2A receptors by adenosine. Our studies suggest that inhibiting the STAT6 pathway to increase CD39 expression has the potential to treat autoimmune disease while stimulation of the pathway could improve T cell immunity.


Assuntos
Adenosina , Interleucina-4 , Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Regulação da Expressão Gênica , Interleucina-4/metabolismo , Transdução de Sinais
13.
Nat Metab ; 4(6): 759-774, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35739396

RESUMO

Tissue macrophages (Mϕ) are essential effector cells in rheumatoid arthritis (RA), contributing to autoimmune tissue inflammation through diverse effector functions. Their arthritogenic potential depends on their proficiency to survive in the glucose-depleted environment of the inflamed joint. Here, we identify a mechanism that links metabolic adaptation to nutrient stress with the efficacy of tissue Mϕ to activate adaptive immunity by presenting antigen to tissue-invading T cells. Specifically, Mϕ populating the rheumatoid joint produce and respond to the small cytokine CCL18, which protects against cell death induced by glucose withdrawal. Mechanistically, CCL18 induces the transcription factor RFX5 that selectively upregulates glutamate dehydrogenase 1 (GLUD1), thus enabling glutamate utilization to support energy production. In parallel, RFX5 enhances surface expression of HLA-DR molecules, promoting Mϕ-dependent expansion of antigen-specific T cells. These data place CCL18 at the top of a RFX5-GLUD1 survival pathway and couple adaptability to nutrient conditions in the tissue environment to antigen-presenting function in autoimmune tissue inflammation.


Assuntos
Macrófagos , Fatores de Transcrição , Glucose , Humanos , Inflamação , Nutrientes , Fatores de Transcrição de Fator Regulador X
14.
Front Immunol ; 13: 844300, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35296082

RESUMO

Blood vessels are indispensable for host survival and are protected from inappropriate inflammation by immune privilege. This protection is lost in patients with autoimmune vasculitides, a heterogeneous group of diseases causing damage to arteries, arterioles, and capillaries. Vasculitis leads to vascular wall destruction and/or luminal occlusion, resulting in hemorrhage and tissue ischemia. Failure in the quantity and quality of immunosuppressive regulatory T cells (Treg) has been implicated in the breakdown of the vascular immune privilege. Emerging data suggest that Treg deficiencies are disease-specific, affecting distinct pathways in distinct vasculitides. Mechanistic studies have identified faulty CD8+ Tregs in Giant Cell Arteritis (GCA), a vasculitis of the aorta and the large aortic branch vessels. Specifically, aberrant signaling through the NOTCH4 receptor expressed on CD8+ Treg cells leads to rerouting of intracellular vesicle trafficking and failure in the release of immunosuppressive exosomes, ultimately boosting inflammatory attack to medium and large arteries. In Kawasaki's disease, a medium vessel vasculitis targeting the coronary arteries, aberrant expression of miR-155 and dysregulated STAT5 signaling have been implicated in undermining CD4+ Treg function. Explorations of mechanisms leading to insufficient immunosuppression and uncontrolled vascular inflammation hold the promise to discover novel therapeutic interventions that could potentially restore the immune privilege of blood vessels and pave the way for urgently needed innovations in vasculitis management.


Assuntos
Arterite de Células Gigantes , Granulomatose com Poliangiite , Síndrome de Linfonodos Mucocutâneos , Poliarterite Nodosa , Linfócitos T Reguladores/patologia , Artérias/patologia , Arterite de Células Gigantes/imunologia , Arterite de Células Gigantes/patologia , Granulomatose com Poliangiite/imunologia , Granulomatose com Poliangiite/patologia , Humanos , Inflamação , Síndrome de Linfonodos Mucocutâneos/imunologia , Síndrome de Linfonodos Mucocutâneos/patologia , Poliarterite Nodosa/imunologia , Poliarterite Nodosa/patologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo
15.
Semin Immunopathol ; 44(3): 281-301, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35141865

RESUMO

Two vasculitides, giant cell arteritis (GCA) and Takayasu arteritis (TAK), are recognized as autoimmune and autoinflammatory diseases that manifest exclusively within the aorta and its large branches. In both entities, the age of the affected host is a critical risk factor. TAK manifests during the 2nd-4th decade of life, occurring while the immune system is at its height of performance. GCA is a disease of older individuals, with infrequent cases during the 6th decade and peak incidence during the 8th decade of life. In both vasculitides, macrophages and T cells infiltrate into the adventitia and media of affected vessels, induce granulomatous inflammation, cause vessel wall destruction, and reprogram vascular cells to drive adventitial and neointimal expansion. In GCA, abnormal immunity originates in an aged immune system and evolves within the aged vascular microenvironment. One hallmark of the aging immune system is the preferential loss of CD8+ T cell function. Accordingly, in GCA but not in TAK, CD8+ effector T cells play a negligible role and anti-inflammatory CD8+ T regulatory cells are selectively impaired. Here, we review current evidence of how the process of immunosenescence impacts the risk for GCA and how fundamental differences in the age of the immune system translate into differences in the granulomatous immunopathology of TAK versus GCA.


Assuntos
Imunossenescência , Vasculite , Idoso , Envelhecimento , Humanos , Macrófagos , Fatores de Risco
16.
Cell Rep ; 37(6): 109981, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34758299

RESUMO

Memory T cells exhibit considerable diversity that determines their ability to be protective. Here, we examine whether changes in T cell heterogeneity contribute to the age-associated failure of immune memory. By screening for age-dependent T cell-surface markers, we identify CD4 and CD8 memory T cell subsets that are unrelated to previously defined subsets of central and effector memory cells. Memory T cells expressing the ecto-5'-nucleotidase CD73 constitute a functionally distinct subset of memory T cells that declines with age. They resemble long-lived, polyfunctional memory cells but are also poised to display effector functions and to develop into cells resembling tissue-resident memory T cells (TRMs). Upstream regulators of differential chromatin accessibility and transcriptomes include transcription factors that facilitate CD73 expression and regulate TRM differentiation. CD73 is not just a surrogate marker of these regulatory networks but is directly involved in T cell survival.


Assuntos
5'-Nucleotidase/metabolismo , Regulação da Expressão Gênica , Memória Imunológica , Ativação Linfocitária/imunologia , Subpopulações de Linfócitos T/imunologia , 5'-Nucleotidase/genética , Adulto , Fatores Etários , Idoso , Animais , Diferenciação Celular , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade
17.
Nat Immunol ; 22(12): 1551-1562, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34811544

RESUMO

Misdirected immunity gives rise to the autoimmune tissue inflammation of rheumatoid arthritis, in which excess production of the cytokine tumor necrosis factor (TNF) is a central pathogenic event. Mechanisms underlying the breakdown of self-tolerance are unclear, but T cells in the arthritic joint have a distinctive metabolic signature of ATPlo acetyl-CoAhi proinflammatory effector cells. Here we show that a deficiency in the production of mitochondrial aspartate is an important abnormality in these autoimmune T cells. Shortage of mitochondrial aspartate disrupted the regeneration of the metabolic cofactor nicotinamide adenine dinucleotide, causing ADP deribosylation of the endoplasmic reticulum (ER) sensor GRP78/BiP. As a result, ribosome-rich ER membranes expanded, promoting co-translational translocation and enhanced biogenesis of transmembrane TNF. ERrich T cells were the predominant TNF producers in the arthritic joint. Transfer of intact mitochondria into T cells, as well as supplementation of exogenous aspartate, rescued the mitochondria-instructed expansion of ER membranes and suppressed TNF release and rheumatoid tissue inflammation.


Assuntos
Artrite Reumatoide/metabolismo , Ácido Aspártico/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Mitocôndrias/metabolismo , Membrana Sinovial/metabolismo , Fator de Necrose Tumoral alfa/biossíntese , ADP-Ribosilação , Transferência Adotiva , Animais , Artrite Reumatoide/genética , Artrite Reumatoide/imunologia , Artrite Reumatoide/patologia , Autoimunidade , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/transplante , Linfócitos T CD4-Positivos/ultraestrutura , Estudos de Casos e Controles , Células Cultivadas , Retículo Endoplasmático/imunologia , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Chaperona BiP do Retículo Endoplasmático/metabolismo , Feminino , Humanos , Masculino , Camundongos , Mitocôndrias/imunologia , Mitocôndrias/transplante , Mitocôndrias/ultraestrutura , Membrana Sinovial/imunologia , Membrana Sinovial/ultraestrutura , Fator de Necrose Tumoral alfa/genética
18.
Sci Immunol ; 6(60)2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34145066

RESUMO

The nutrient-sensing mammalian target of rapamycin (mTOR) is integral to cell fate decisions after T cell activation. Sustained mTORC1 activity favors the generation of terminally differentiated effector T cells instead of follicular helper and memory T cells. This is particularly pertinent for T cell responses of older adults who have sustained mTORC1 activation despite dysfunctional lysosomes. Here, we show that lysosome-deficient T cells rely on late endosomes rather than lysosomes as an mTORC1 activation platform, where mTORC1 is activated by sensing cytosolic amino acids. T cells from older adults have an increased expression of the plasma membrane leucine transporter SLC7A5 to provide a cytosolic amino acid source. Hence, SLC7A5 and VPS39 deficiency (a member of the HOPS complex promoting early to late endosome conversion) substantially reduced mTORC1 activities in T cells from older but not young individuals. Late endosomal mTORC1 is independent of the negative-feedback loop involving mTORC1-induced inactivation of the transcription factor TFEB that controls expression of lysosomal genes. The resulting sustained mTORC1 activation impaired lysosome function and prevented lysosomal degradation of PD-1 in CD4+ T cells from older adults, thereby inhibiting their proliferative responses. VPS39 silencing of human T cells improved their expansion to pertussis and to SARS-CoV-2 peptides in vitro. Furthermore, adoptive transfer of CD4+ Vps39-deficient LCMV-specific SMARTA cells improved germinal center responses, CD8+ memory T cell generation, and recall responses to infection. Thus, curtailing late endosomal mTORC1 activity is a promising strategy to enhance T cell immunity.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , COVID-19/imunologia , Endossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , SARS-CoV-2/metabolismo , Transdução de Sinais/genética , Transferência Adotiva/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Proteínas Relacionadas à Autofagia/deficiência , Proteínas Relacionadas à Autofagia/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , COVID-19/virologia , Células Cultivadas , Feminino , Proteína Forkhead Box O1/deficiência , Proteína Forkhead Box O1/genética , Voluntários Saudáveis , Humanos , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Lisossomos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transdução de Sinais/imunologia , Transfecção , Proteínas de Transporte Vesicular/deficiência , Proteínas de Transporte Vesicular/genética , Adulto Jovem
19.
FEBS J ; 288(24): 7123-7142, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33590946

RESUMO

The adaptive immune system has the enormous challenge to protect the host through the generation and differentiation of pathogen-specific short-lived effector T cells while in parallel developing long-lived memory cells to control future encounters with the same pathogen. A complex regulatory network is needed to preserve a population of naïve cells over lifetime that exhibit sufficient diversity of antigen receptors to respond to new antigens, while also sustaining immune memory. In parallel, cells need to maintain their proliferative potential and the plasticity to differentiate into different functional lineages. Initial signs of waning immune competence emerge after 50 years of age, with increasing clinical relevance in the 7th-10th decade of life. Morbidity and mortality from infections increase, as drastically exemplified by the current COVID-19 pandemic. Many vaccines, such as for the influenza virus, are poorly effective to generate protective immunity in older individuals. Age-associated changes occur at the level of the T-cell population as well as the functionality of its cellular constituents. The system highly relies on the self-renewal of naïve and memory T cells, which is robust but eventually fails. Genetic and epigenetic modifications contribute to functional differences in responsiveness and differentiation potential. To some extent, these changes arise from defective maintenance; to some, they represent successful, but not universally beneficial adaptations to the aging host. Interventions that can compensate for the age-related defects and improve immune responses in older adults are increasingly within reach.


Assuntos
Envelhecimento/imunologia , COVID-19/imunologia , Células T de Memória/imunologia , Linfócitos T Citotóxicos/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Reguladores/imunologia , Imunidade Adaptativa , Idoso , Envelhecimento/genética , COVID-19/genética , COVID-19/patologia , COVID-19/virologia , Diferenciação Celular , Proliferação de Células , Fosfatase 6 de Especificidade Dupla/genética , Fosfatase 6 de Especificidade Dupla/imunologia , Regulação da Expressão Gênica , Humanos , Células T de Memória/virologia , MicroRNAs/genética , MicroRNAs/imunologia , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/imunologia , Fator 1 de Ligação ao Domínio I Regulador Positivo/genética , Fator 1 de Ligação ao Domínio I Regulador Positivo/imunologia , SARS-CoV-2/imunologia , SARS-CoV-2/patogenicidade , Linfócitos T Citotóxicos/virologia , Linfócitos T Auxiliares-Indutores/virologia , Linfócitos T Reguladores/virologia
20.
Nat Commun ; 12(1): 907, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33568645

RESUMO

Rheumatoid arthritis (RA) and psoriatic arthritis (PsA) are two distinct autoimmune diseases that manifest with chronic synovial inflammation. Here, we show that CD4+ T cells from patients with RA and PsA have increased expression of the pore-forming calcium channel component ORAI3, thereby increasing the activity of the arachidonic acid-regulated calcium-selective (ARC) channel and making T cells sensitive to arachidonic acid. A similar increase does not occur in T cells from patients with systemic lupus erythematosus. Increased ORAI3 transcription in RA and PsA T cells is caused by reduced IKAROS expression, a transcriptional repressor of the ORAI3 promoter. Stimulation of the ARC channel with arachidonic acid induces not only a calcium influx, but also the phosphorylation of components of the T cell receptor signaling cascade. In a human synovium chimeric mouse model, silencing ORAI3 expression in adoptively transferred T cells from patients with RA attenuates tissue inflammation, while adoptive transfer of T cells from healthy individuals with reduced expression of IKAROS induces synovitis. We propose that increased ARC activity due to reduced IKAROS expression makes T cells more responsive and contributes to chronic inflammation in RA and PsA.


Assuntos
Ácido Araquidônico/imunologia , Artrite Reumatoide/imunologia , Linfócitos T CD4-Positivos/imunologia , Membrana Sinovial/imunologia , Idoso , Artrite Psoriásica/genética , Artrite Psoriásica/imunologia , Artrite Reumatoide/genética , Cálcio/imunologia , Canais de Cálcio/genética , Canais de Cálcio/imunologia , Sinalização do Cálcio , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA