Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Genet Med ; 23(7): 1315-1324, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33864021

RESUMO

PURPOSE: Several clinical phenotypes including fetal hydrops, central conducting lymphatic anomaly or capillary malformations with arteriovenous malformations 2 (CM-AVM2) have been associated with EPHB4 (Ephrin type B receptor 4) variants, demanding new approaches for deciphering pathogenesis of novel variants of uncertain significance (VUS) identified in EPHB4, and for the identification of differentiated disease mechanisms at the molecular level. METHODS: Ten index cases with various phenotypes, either fetal hydrops, CM-AVM2, or peripheral lower limb lymphedema, whose distinct clinical phenotypes are described in detail in this study, presented with a variant in EPHB4. In vitro functional studies were performed to confirm pathogenicity. RESULTS: Pathogenicity was demonstrated for six of the seven novel EPHB4 VUS investigated. A heterogeneity of molecular disease mechanisms was identified, from loss of protein production or aberrant subcellular localization to total reduction of the phosphorylation capability of the receptor. There was some phenotype-genotype correlation; however, previously unreported intrafamilial overlapping phenotypes such as lymphatic-related fetal hydrops (LRFH) and CM-AVM2 in the same family were observed. CONCLUSION: This study highlights the usefulness of protein expression and subcellular localization studies to predict EPHB4 variant pathogenesis. Our accurate clinical phenotyping expands our interpretation of the Janus-faced spectrum of EPHB4-related disorders, introducing the discovery of cases with overlapping phenotypes.


Assuntos
Hidropisia Fetal , Receptor EphB4 , Estudos de Associação Genética , Humanos , Fenótipo , Fosforilação , Receptor EphB4/genética
2.
Am J Pathol ; 178(3): 969-74, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21356349

RESUMO

Loss of function mutations in FGD1 result in faciogenital dysplasia, an X-linked human developmental disorder that adversely affects the formation of multiple skeletal structures. FGD1 encodes a guanine nucleotide exchange factor that specifically activates Cdc42, a Rho family small GTPase that regulates a variety of cellular behaviors. We have found that FGD1 is expressed in human mesenchymal stem cells (hMSCs) isolated from adult bone marrow. hMSCs are multipotent cells that can differentiate into many cell types, including fibroblasts, osteoblasts, adipocytes, and chondrocytes, and are thought to play a role in maintaining musculoskeletal tissues throughout life. We demonstrate an active role of FGD1 in osteogenic differentiation of hMSCs. During osteogenic differentiation of hMSCs in culture, we observed up-regulation of both FGD1 expression and Cdc42 activity. Activating FGD1/Cdc42 signaling by overexpression of either FGD1 or constitutively active Cdc42 promoted hMSC osteogenesis, while inhibiting Cdc42 signaling by either dominant negative mutants of FGD1 or Cdc42 suppressed osteogenesis. These results demonstrate an important role for FGD1/Cdc42 signaling in hMSC osteogenesis and suggest that the defects in bone remodeling in faciogenital dysplasia may persist throughout adult life and serve as a potential pathway that may be targeted for enhancing bone regeneration.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/metabolismo , Células-Tronco Mesenquimais/metabolismo , Osteogênese , Proteína cdc42 de Ligação ao GTP/metabolismo , Genes Dominantes/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Humanos , Células-Tronco Mesenquimais/citologia , Osteogênese/genética , Regulação para Cima/genética
3.
Cleft Palate Craniofac J ; 48(5): 631-5, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20839967

RESUMO

Isolated, premature fusion of the frontosphenoidal suture is rare. This report describes an unusual combination of frontosphenoidal craniosynostosis and achondroplasia. Although craniosynostosis is known to occur in allelic conditions such as thanatophoric dysplasia, craniosynostosis in individuals with achondroplasia is exceedingly rare. Due to the distracting diagnosis of achondroplasia or inadequate knowledge of craniosynostosis, the abnormal head shape was initially treated by other physicians with helmet molding. Plastic surgery consultation was obtained at 2 years of age and surgical care was provided. An acceptable head shape was obtained, but the delay in appropriate evaluation was disconcerting. To our knowledge this is the first reported case of isolated frontosphenoidal craniosynostosis associated with achondroplasia.


Assuntos
Acondroplasia/terapia , Craniossinostoses/terapia , Osso Frontal/anormalidades , Osso Esfenoide/anormalidades , Acondroplasia/diagnóstico , Acondroplasia/genética , Craniossinostoses/diagnóstico , Craniossinostoses/genética , Humanos , Recém-Nascido , Masculino , Tomografia Computadorizada por Raios X
4.
Mol Biol Cell ; 20(9): 2413-27, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19261807

RESUMO

Mutations in the FGD1 gene are responsible for the X-linked disorder known as faciogenital dysplasia (FGDY). FGD1 encodes a guanine nucleotide exchange factor that specifically activates the GTPase Cdc42. In turn, Cdc42 is an important regulator of membrane trafficking, although little is known about FGD1 involvement in this process. During development, FGD1 is highly expressed during bone growth and mineralization, and therefore a lack of the functional protein leads to a severe phenotype. Whether the secretion of proteins, which is a process essential for bone formation, is altered by mutations in FGD1 is of great interest. We initially show here that FGD1 is preferentially associated with the trans-Golgi network (TGN), suggesting its involvement in export of proteins from the Golgi. Indeed, expression of a dominant-negative FGD1 mutant and RNA interference of FGD1 both resulted in a reduction in post-Golgi transport of various cargoes (including bone-specific proteins in osteoblasts). Live-cell imaging reveals that formation of post-Golgi transport intermediates directed to the cell surface is inhibited in FGD1-deficient cells, apparently due to an impairment of TGN membrane extension along microtubules. These effects depend on FGD1 regulation of Cdc42 activation and its association with the Golgi membranes, and they may contribute to FGDY pathogenesis.


Assuntos
Complexo de Golgi/enzimologia , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo , Animais , Linhagem Celular , Ativação Enzimática , Inativação Gênica , Complexo de Golgi/ultraestrutura , Fatores de Troca do Nucleotídeo Guanina/deficiência , Guanosina Difosfato/metabolismo , Humanos , Membranas Intracelulares/enzimologia , Membranas Intracelulares/ultraestrutura , Camundongos , Mimetismo Molecular , Proteínas Mutantes/metabolismo , Osteoblastos/metabolismo , Ligação Proteica , Transporte Proteico , Rede trans-Golgi/enzimologia , Rede trans-Golgi/ultraestrutura
5.
Biochemistry ; 43(9): 2422-7, 2004 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-14992579

RESUMO

Mutations in faciogenital dysplasia protein (Fgd1) result in the human disease faciogenital dysplasia (FGDY). Fgd1 contains a RhoGEF domain specific for Cdc42. Fgd1 also contains a Src homology (SH3) binding domain (SH3-BD) that binds directly to the SH3 domain of cortactin, which promotes actin assembly by actin-related protein (Arp)2/3 complex. Here, we report the effect of ligation of cortactin's SH3 domain by the Fgd1 SH3-BD on actin polymerization in vitro. Glutathione S-transferase (GST)-fused Fgd1 SH3-BD enhanced the ability of cortactin to stimulate Arp2/3-mediated actin polymerization. However, a synthetic peptide containing only the SH3-BD sequence had no effect. The SH3-BD peptide bound to cortactin and inhibited the effect of GST-Fgd1 SH3-BD, suggesting that GST dimerization was responsible for the stimulating effect of GST-Fgd1 SH3-BD. When GST-Fgd1 SH3-BD was prepared as a heterodimer with a control GST fusion protein (GST-Pac1), no stimulatory effect on actin polymerization was observed. In addition, when cortactin was dimerized via its N-terminus, away from the C-terminal SH3 domain, actin polymerization with Arp2/3 complex increased markedly, compared to free cortactin. Thus, cortactin ligated by Fgd1 is fully active, indicating that the cell can use Fgd1 to target actin assembly. Moreover, if Fgd1 is multimerized, then cortactin's activity should be enhanced. Fgd1 and cortactin may participate as scaffolds and signal transducers in a positive feedback cycle to promote actin assembly at the cell cortex.


Assuntos
Actinas/metabolismo , Proteínas do Citoesqueleto/fisiologia , Proteínas dos Microfilamentos/fisiologia , Proteínas/fisiologia , Proteína 2 Relacionada a Actina , Proteína 3 Relacionada a Actina , Sequência de Aminoácidos , Animais , Bovinos , Cortactina , Dimerização , Retroalimentação/fisiologia , Fatores de Troca do Nucleotídeo Guanina , Humanos , Ligadura , Camundongos , Dados de Sequência Molecular , Proteínas/metabolismo , Domínios de Homologia de src/fisiologia
6.
Am J Med Genet A ; 123A(3): 261-6, 2003 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-14608648

RESUMO

Oculo-facio-cardio-dental syndrome (OFCD) is an uncommon multiple congenital anomaly syndrome that is characterized by congenital cataracts, multiple minor facial dysmorphic features, congenital heart defects, and dental anomalies including canine radiculomegaly and oligodontia. Although most cases of OFCD are sporadic, since all reported OFCD individuals have been female, it has been suggested that OFCD is an X-linked dominant trait. Here we report two affected female patients with OFCD, a mother and daughter, who both had congenital cataracts, microphthalmia, characteristic dental anomalies, and typical facial dysmorphisms. These features were diagnostic for OFCD; thus, these cases represent the second documented instance of mother-to-daughter OFCD transmission. In addition to the clinical features typically seen in OFCD individuals, the affected daughter exhibited several additional congenital anomalies including intestinal malrotation and hypoplastic thumbs. Thus, these cases further define and expand the OFCD clinical phenotype. These two individuals also displayed a skewed pattern of X chromosome inactivation. Together, these data strongly support the hypothesis that OFCD is inherited as an X-linked dominant condition.


Assuntos
Anormalidades Múltiplas/genética , Anormalidades do Olho , Face/anormalidades , Cardiopatias Congênitas/patologia , Anormalidades Dentárias , Anormalidades Múltiplas/patologia , Adulto , Cromossomos Humanos X/genética , DNA/genética , DNA/metabolismo , Metilação de DNA , Mecanismo Genético de Compensação de Dose , Saúde da Família , Feminino , Genes Dominantes/genética , Humanos , Lactente , Síndrome
7.
Hum Mol Genet ; 12(16): 1981-93, 2003 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-12913069

RESUMO

FGD1 mutations result in Faciogenital Dysplasia (FGDY), an X-linked human disease that affects skeletal formation and embryonic morphogenesis. FGD1 and Fgd1, the mouse FGD1 ortholog, encode guanine nucleotide exchange factors (GEF) that specifically activate Cdc42, a Rho GTPase that controls the organization of the actin cytoskeleton. To further understand FGD1/Fgd1 signaling and begin to elucidate the molecular pathophysiology of FGDY, we demonstrate that Fgd1 directly interacts with cortactin and mouse actin-binding protein 1 (mAbp1), actin-binding proteins that regulate actin polymerization through the Arp2/3 complex. In yeast two-hybrid studies, cortactin and mAbp1 Src homology 3 (SH3) domains interact with a single Fgd1 SH3-binding domain (SH3-BD), and biochemical studies show that the Fgd1 SH3-BD directly binds to cortactin and mAbp1 in vitro. Immunoprecipitation studies show that Fgd1 interacts with cortactin and mAbp1 in vivo and that Fgd1 SH3-BD mutations disrupt binding. Immunocytochemical studies show that Fgd1 colocalizes with cortactin and mAbp1 in lamellipodia and membrane ruffles, and that Fgd1 subcellular targeting is dynamic. By using truncated cortactin proteins, immunocytochemical studies show that the cortactin SH3 domain targets Fgd1 to the subcortical actin cytoskeleton, and that abnormal Fgd1 localization results in actin cytoskeletal abnormalities and significant changes in cell shape and viability. Thus, this study provides novel in vitro and in vivo evidence that Fgd1 specifically and directly interacts with cortactin and mAbp1, and that these interactions play an important role in regulating the actin cytoskeleton and, subsequently, cell shape.


Assuntos
Citoesqueleto de Actina/metabolismo , Ossos Faciais/anormalidades , Ossos Faciais/embriologia , Displasia Fibrosa Poliostótica/genética , Proteínas dos Microfilamentos/metabolismo , Proteínas/metabolismo , Anormalidades Urogenitais/genética , Proteína 2 Relacionada a Actina , Proteína 3 Relacionada a Actina , Sequência de Aminoácidos , Animais , Linhagem Celular , Tamanho Celular , Cortactina , Proteínas do Citoesqueleto/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Camundongos , Dados de Sequência Molecular , Proteínas/genética , Homologia de Sequência de Aminoácidos , Síndrome , Proteína cdc42 de Ligação ao GTP/genética , Domínios de Homologia de src
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA