Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Br J Dermatol ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39026424

RESUMO

BACKGROUND: Monilethrix is a rare hereditary hair disorder that is characterised by a beaded hair shaft structure and increased hair fragility. Patients may also present with keratosis pilaris and nail changes. Research has identified three genes for autosomal-dominant monilethrix (KRT81, KRT83, and KRT86), and one gene for the autosomal-recessive form (DSG4). OBJECTIVES: To investigate the genetic basis of autosomal-dominant monilethrix in families with no pathogenic variants in any of the known monilethrix genes, and to understand the mechanistic basis of variant pathogenicity using a cellular model. METHODS: Nine affected individuals from four unrelated families were included in this study. A clinical diagnosis of monilethrix was assigned based on clinical examination and/or trichoscopy. Exome sequencing (ES) was performed in six individuals to identify pathogenic variants, and Sanger sequencing was used for co-segregation and haplotype analyses. Cell culture experiments (immunoblotting, immunofluorescence, and reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) analyses) were used to confirm variant pathogenicity, to determine expression and subcellular localisation of proteins, and to identify a possible nonsense-mediated mRNA decay. RESULTS: In six affected individuals with clinically suggested monilethrix, ES led to the identification of the nonsense variant c.1081G>T; p.(Glu361*) in KRT31, which was subsequently identified in other affected members of these families by Sanger sequencing. This variant led to the abolition of both the last three amino acids of the 2B subdomain and the complete C-terminal tail domain of keratin 31. Immunoblotting demonstrated that when co-expressed with its binding partner keratin 85, the truncated keratin 31 was still expressed, albeit less abundantly than the wild type protein. Immunofluorescence revealed that p.(Glu361*) keratin 31 had an altered cytoskeletal localisation and formed vesicular-like structures in the cell cytoplasm near the cell membrane. RT-qPCR analysis did not generate evidence for a nonsense mediated decay of the mutant transcript. CONCLUSIONS: This study is the first to identify pathogenic variants in KRT31 as a cause of autosomal-dominant monilethrix. This highlights the importance of hair keratin proteins in hair biology, and will increase the molecular diagnostic yield for rare ectodermal phenotypes of hair and nail tissues.

2.
Br J Dermatol ; 189(6): 741-749, 2023 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-37671665

RESUMO

BACKGROUND: Short anagen hair (SAH) is a rare paediatric hair disorder characterized by a short anagen phase, an inability to grow long scalp hair and a negative psychological impact. The genetic basis of SAH is currently unknown. OBJECTIVES: To perform molecular genetic investigations in 48 individuals with a clinical phenotype suggestive of SAH to identify, if any, the genetic basis of this condition. METHODS: Exome sequencing was performed in 27 patients diagnosed with SAH or with a complaint of short, nongrowing hair. The cohort was screened for variants with a minor allele frequency (MAF) < 5% in the general population and a Combined Annotation Dependent Depletion (CADD) score > 15, to identify genes whose variants were enriched in this cohort. Sanger sequencing was used for variant validation and screening of 21 additional individuals with the same clinical diagnosis and their relatives. Genetic association testing of SAH-related variants for male pattern hair loss (MPHL) was performed using UK Biobank data. RESULTS: Analyses revealed that 20 individuals (42%) carried mono- or biallelic pathogenic variants in WNT10A. Rare WNT10A variants are associated with a phenotypic spectrum ranging from no clinical signs to severe ectodermal dysplasia. A significant association was found between WNT10A and SAH, and this was mostly observed in individuals with light-coloured hair and regression of the frontoparietal hairline. Notably, the most frequent variant in the cohort [c.682T>A;p.(Phe228Ile)] was in linkage disequilibrium with four common WNT10A variants, all of which have a known association with MPHL. Using UK Biobank data, our analyses showed that c.682T>A;p.(Phe228Ile) and one other variant identified in the SAH cohort are also associated with MPHL, and partially explain the known associations between WNT10A and MPHL. CONCLUSIONS: Our results suggest that WNT10A is associated with SAH and that SAH has a genetic overlap with the common phenotype MPHL. The presumed shared biologic effect of WNT10A variants in SAH and MPHL is a shortening of the anagen phase. Other factors, such as modifier genes and sex, may also play a role in the clinical manifestation of hair phenotypes associated with the WNT10A locus.


Assuntos
Displasia Ectodérmica , Cabelo , Humanos , Masculino , Criança , Alopecia , Fenótipo , Displasia Ectodérmica/genética , Frequência do Gene , Proteínas Wnt/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA