Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Antioxidants (Basel) ; 12(11)2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38001858

RESUMO

The intracellular redox-active labile iron pool (LIP) is weakly chelated and available for integration into the iron metalloproteins that are involved in diverse cellular processes, including cancer cell-specific metabolic oxidative stress. Abnormal iron metabolism and elevated LIP levels are linked to the poor survival of lung cancer patients, yet the underlying mechanisms remain unclear. Depletion of the LIP in non-small-cell lung cancer cell lines using the doxycycline-inducible overexpression of the ferritin heavy chain (Ft-H) (H1299 and H292), or treatment with deferoxamine (DFO) (H1299 and A549), inhibited cell growth and decreased clonogenic survival. The Ft-H overexpression-induced inhibition of H1299 and H292 cell growth was also accompanied by a significant delay in transit through the S-phase. In addition, both Ft-H overexpression and DFO in H1299 resulted in increased single- and double-strand DNA breaks, supporting the involvement of replication stress in the response to LIP depletion. The Ft-H and DFO treatment also sensitized H1299 to VE-821, an inhibitor of ataxia telangiectasis and Rad2-related (ATR) kinase, highlighting the potential of LIP depletion, combined with DNA damage response modifiers, to alter lung cancer cell responses. In contrast, only DFO treatment effectively reduced the LIP, clonogenic survival, cell growth, and sensitivity to VE-821 in A549 non-small-cell lung cancer cells. Importantly, the Ft-H and DFO sensitized both H1299 and A549 to chemoradiation in vitro, and Ft-H overexpression increased the efficacy of chemoradiation in vivo in H1299. These results support the hypothesis that the depletion of the LIP can induce genomic instability, cell death, and potentiate therapeutic responses to chemoradiation in NSCLC.

2.
Antioxidants (Basel) ; 12(9)2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37759986

RESUMO

Recent studies have demonstrated an important role for vitamin C in the epigenetic regulation of cancer-related genes via DNA demethylation by the ten-eleven translocation (TET) methylcytosine dioxygenase enzymes. DNA methyltransferase (DNMT) reverses this, increasing DNA methylation and decreasing gene expression. Dual oxidase (DUOX) enzymes produce hydrogen peroxide (H2O2) in normal pancreatic tissue but are silenced in pancreatic cancer (PDAC). Treatment of PDAC with pharmacologic ascorbate (P-AscH-, intravenous, high dose vitamin C) increases DUOX expression. We hypothesized that inhibiting DNMT may act synergistically with P-AscH- to further increase DUOX expression and cytotoxicity of PDAC. PDAC cells demonstrated dose-dependent increases in DUOX mRNA and protein expression when treated with DNMT inhibitors. PDAC cells treated with P-AscH- + DNMT inhibitors demonstrated increased DUOX expression, increased intracellular oxidation, and increased cytotoxicity in vitro and in vivo compared to either treatment alone. These findings suggest a potential therapeutic, epigenetic mechanism to treat PDAC.

3.
Radiat Res ; 200(5): 444-455, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37758045

RESUMO

Pharmacological ascorbate (P-AscH-, high dose, intravenous vitamin C) preferentially sensitizes human pancreas ductal adenocarcinoma (PDAC) cells to radiation-induced toxicity compared to non-tumorigenic epithelial cells. Radiation-induced G2-checkpoint activation contributes to the resistance of cancer cells to DNA damage induced toxicity. We hypothesized that P-AscH- induced radio-sensitization of PDAC cells is mediated by perturbations in the radiation induced activation of the G2-checkpoint pathway. Both non-tumorigenic pancreatic ductal epithelial and PDAC cells display decreased clonogenic survival and increased doubling times after radiation treatment. In contrast, the addition of P-AscH- to radiation increases clonogenic survival and decreases the doubling time of non-tumorigenic epithelial cells but decreasing clonogenic survival and increasing the doubling time of PDAC cells. Results from the mitotic index and propidium iodide assays showed that while the P-AscH- treatments did not affect radiation-induced G2-checkpoint activation, it enhanced G2-accumulation. The addition of catalase reverses the increases in G2-accumulation, indicating a peroxide-mediated mechanism. In addition, P-AscH- treatment of PDAC cells suppresses radiation-induced accumulation of cyclin B1 protein levels. Both translational and post-translational pathways appear to regulate cyclin B1 protein levels after the combination treatment of PDAC cells with P-AscH- and radiation. The protein changes seen are reversed by the addition of catalase suggesting that hydrogen peroxide mediates P-AscH- induced radiation sensitization of PDAC cells by enhancing G2-accumulation and reducing cyclin B1 protein levels.


Assuntos
Antineoplásicos , Neoplasias Pancreáticas , Humanos , Catalase/metabolismo , Catalase/uso terapêutico , Peróxido de Hidrogênio/farmacologia , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/uso terapêutico , Ciclina B1 , Linhagem Celular Tumoral , Neoplasias Pancreáticas/tratamento farmacológico , Antineoplásicos/farmacologia , Pâncreas/metabolismo , Pâncreas/patologia , Neoplasias Pancreáticas
4.
Free Radic Biol Med ; 204: 108-117, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37137343

RESUMO

Pharmacological ascorbate (P-AscH-; high dose given intravenously) generates H2O2 that is selectively cytotoxic to cancer compared to normal cells. The RAS-RAF-ERK1/2 is a major signaling pathway in cancers carrying RAS mutations and is known to be activated by H2O2. Activated ERK1/2 also phosphorylates the GTPase dynamin-related protein (Drp1), which then stimulates mitochondrial fission. Although early generation of H2O2 leads to cytotoxicity of cancer cells, we hypothesized that sustained increases in H2O2 activate ERK-Drp1 signaling, leading to an adaptive response; inhibition of this pathway would enhance the toxicity of P-AscH-. Increases in phosphorylated ERK and Drp1 induced by P-AscH- were reversed with genetic and pharmacological inhibitors of ERK and Drp1, as well as in cells lacking functional mitochondria. P-AscH- increased Drp1 colocalization to mitochondria, decreased mitochondrial volume, increased disconnected components, and decreased mitochondrial length, suggesting an increase in mitochondrial fission 48 h after treatment with P-AscH-. P-AscH- decreased clonogenic survival; this was enhanced by genetic and pharmacological inhibition of both ERK and Drp1. In murine tumor xenografts, the combination of P-AscH- and pharmacological inhibition of Drp1 increased overall survival. These results suggest that P-AscH- induces sustained changes in mitochondria, through activation of the ERK/Drp1 signaling pathway, an adaptive response. Inhibition of this pathway enhanced the toxicity P-AscH- to cancer cells.


Assuntos
Antineoplásicos , Ácido Ascórbico , Mitocôndrias , Dinâmica Mitocondrial , Animais , Humanos , Camundongos , Antineoplásicos/farmacologia , Ácido Ascórbico/farmacologia , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , MAP Quinases Reguladas por Sinal Extracelular/genética , Peróxido de Hidrogênio/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Dinâmica Mitocondrial/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Fosforilação , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Análise de Sobrevida , Feminino
5.
Int J Radiat Oncol Biol Phys ; 115(4): 933-944, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36228747

RESUMO

PURPOSE: Ataxia telangiectasia mutated kinase (ATM) inhibitors are potent radiosensitizers that regulate DNA damage responses and redox metabolism, but they have not been translated clinically because of the potential for excess normal tissue toxicity. Pharmacologic ascorbate (P-AscH-; intravenous administration achieving mM plasma concentrations) selectively enhances H2O2-induced oxidative stress and radiosensitization in tumors while acting as an antioxidant and mitigating radiation damage in normal tissues including the bowel. We hypothesized that P-AscH- could enhance the therapeutic index of ATM inhibitor-based chemoradiation by simultaneously enhancing the intended effects of ATM inhibitors in tumors and mitigating off-target effects in adjacent normal tissues. METHODS AND MATERIALS: Clonogenic survival was assessed in human (human colon tumor [HCT]116, SW480, HT29) and murine (CT26, MC38) colorectal tumor lines and normal cells (human umbilical vein endothelial cell, FHs74) after radiation ± DNA repair inhibitors ± P-AscH-. Tumor growth delay was assessed in mice with HCT116 or MC38 tumors after fractionated radiation (5 Gy × 3) ± the ATM inhibitor KU60019 ± P-AscH-. Intestinal injury, oxidative damage, and transforming growth factor ß immunoreactivity were quantified using immunohistochemistry after whole abdominal radiation (10 Gy) ± KU60019 ± P-AscH-. Cell cycle distribution and ATM subcellular localization were assessed using flow cytometry and immunohistochemistry. The role of intracellular H2O2 fluxes was assessed using a stably expressed doxycycline-inducible catalase transgene. RESULTS: KU60019 with P-AscH- enhanced radiosensitization in colorectal cancer models in vitro and in vivo by H2O2-dependent oxidative damage to proteins and enhanced DNA damage, abrogation of the postradiation G2 cell cycle checkpoint, and inhibition of ATM nuclear localization. In contrast, concurrent P-AscH- markedly reduced intestinal toxicity and oxidative damage with KU60019. CONCLUSIONS: We provide evidence that redox modulating drugs, such as P-AscH-, may facilitate the clinical translation of ATM inhibitors by enhancing tumor radiosensitization while simultaneously protecting normal tissues.


Assuntos
Ataxia Telangiectasia , Neoplasias Pancreáticas , Humanos , Animais , Camundongos , Ácido Ascórbico/farmacologia , Ácido Ascórbico/uso terapêutico , Peróxido de Hidrogênio , Linhagem Celular Tumoral , Neoplasias Pancreáticas/patologia , Oxirredução , Índice Terapêutico , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Dano ao DNA , Proteínas de Ciclo Celular/metabolismo
6.
Sci Rep ; 12(1): 22521, 2022 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-36581766

RESUMO

At pharmacological levels, ascorbate (P-AscH-) acts as a pro-oxidant by generating H2O2, depleting ATP in sensitive cells leading to cell death. The aim of this study was to determine the role of ATP production by oxidative phosphorylation or glycolysis in mechanisms of resistance to P-AscH-induced cell death. Pancreatic cancer cells were used to generate ρ0 cells by mitochondrial overexpression of the Y147A mutant uracil-N-glycosylase or Herpes Simplex Virus protein. The ρ0 phenotype was confirmed by probing for mitochondrial DNA, mitochondrial DNA-encoded cytochrome c oxidase subunit 2, and monitoring the rate of oxygen consumption. In ρ0 cells, glycolysis accounted for 100% of ATP production as there was no mitochondrial oxygen consumption. Even though the activities of H2O2-removing antioxidant enzymes were similar in both the parental and ρ0 clones, P-AscH- -induced clonogenic cell death in ρ0 cells showed more resistance than the parental cell line. In addition, P-AscH- induced more DNA damage and more consumption of NAD+ and greater decreases in the production of ATP in the parental cell line compared to the ρ0 cells. Thus, cancer cells that largely use oxidative phosphorylation to generate ATP may be more sensitive to P-AscH- compared with cells that are glycolysis-dependent.


Assuntos
Antineoplásicos , Neoplasias Pancreáticas , Humanos , Linhagem Celular Tumoral , Peróxido de Hidrogênio/metabolismo , Neoplasias Pancreáticas/metabolismo , Antioxidantes/uso terapêutico , Antineoplásicos/uso terapêutico , Trifosfato de Adenosina
7.
Free Radic Biol Med ; 185: 25-35, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35476930

RESUMO

Radiotherapy is an important treatment modality for glioblastoma (GBM), yet the initial effectiveness of radiotherapy is eventually lost due to the development of adaptive radioresistance during fractionated radiation therapy. Defining the molecular mechanism(s) responsible for the adaptive radioresistance in GBM is necessary for the development of effective treatment options. The cellular labile iron pool (LIP) is very important for determining the cellular response to radiation, as it contributes to radiation-induced production of reactive oxygen species (ROS) such as lipid radicals through Fenton reactions. Recently, cytochrome c oxidase (CcO), a mitochondrial heme-containing enzyme also involved in regulating ROS production, was found to be involved in GBM chemoresistance. However, the role of LIP and CcO in GBM radioresistance is not known. Herein, we tested the hypothesis that CcO-mediated alterations in the level of labile iron contribute to adaptive radioresistance. Using an in vitro model of GBM adaptive radioresistance, we found an increase in CcO activity in radioresistant cells that associated with a decrease in the cellular LIP, decrease in lipid peroxidation, and a switch in the CcO subunit 4 (COX4) isoform expressed, from COX4-2 to COX4-1. Furthermore, knockdown of COX4-1 in radioresistant GBM cells decreased CcO activity and restored radiosensitivity, whereas overexpression of COX4-1 in radiosensitive cells increased CcO activity and rendered the cells radioresistant. Overexpression of COX4-1 in radiosensitive cells also significantly reduced the cellular LIP and lipid peroxidation. Pharmacological manipulation of the cellular labile iron level using iron chelators altered CcO activity and the radiation response. Overall, these results demonstrate a mechanistic link between CcO activity and LIP in GBM radioresistance and identify the CcO subunit isoform switch from COX4-2 to COX4-1 as a novel biochemical node for adaptive radioresistance of GBM. Manipulation of CcO and the LIP may restore the sensitivity to radiation in radioresistant GBM cells and thereby provide a strategy to improve therapeutic outcome in patients with GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/radioterapia , Linhagem Celular Tumoral , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Glioblastoma/genética , Glioblastoma/radioterapia , Humanos , Ferro , Tolerância a Radiação/genética , Espécies Reativas de Oxigênio
8.
Free Radic Biol Med ; 165: 421-434, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33561488

RESUMO

Dihydroartemisinin (DHA) is an FDA-approved antimalarial drug that has been repurposed for cancer therapy because of its preferential antiproliferative effects on cancer versus normal cells. Mitochondria represent an attractive target for cancer therapy based on their regulatory role in proliferation and cell death. This study investigates whether DHA conjugated to innately fluorescent N-alkyl triphenylvinylpyridinium (TPVP) perturbs mitochondrial functions resulting in a differential toxicity of cancer versus normal cells. TPVP-DHA treatments resulted in a dose-dependent toxicity of human melanoma and pancreatic cancer cells, whereas normal human fibroblasts were resistant to this treatment. TPVP-DHA treatments resulted in a G1-delay of the cancer cell cycle, which was also associated with a significant inhibition of the mTOR-metabolic and ERK1/2-proliferative signaling pathways. TPVP-DHA treatments perturbed mitochondrial functions, which correlated with increases in mitochondrial fission. In summary, TPVP mediated mitochondrial targeting of DHA enhanced cancer cell toxicity by perturbing mitochondrial functions and morphology.


Assuntos
Antimaláricos , Artemisininas , Neoplasias , Antimaláricos/toxicidade , Apoptose , Artemisininas/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Mitocôndrias
9.
PLoS One ; 15(12): e0244540, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33378390

RESUMO

Despite dramatic improvements in outcomes arising from the introduction of targeted therapies and immunotherapies, metastatic melanoma is a highly resistant form of cancer with 5 year survival rates of <35%. Drug resistance is frequently reported to be associated with changes in oxidative metabolism that lead to malignancy that is non-responsive to current treatments. The current report demonstrates that triphenylphosphonium(TPP)-based lipophilic cations can be utilized to induce cytotoxicity in pre-clinical models of malignant melanoma by disrupting mitochondrial metabolism. In vitro experiments demonstrated that TPP-derivatives modified with aliphatic side chains accumulated in melanoma cell mitochondria; disrupted mitochondrial metabolism; led to increases in steady-state levels of reactive oxygen species; decreased total glutathione; increased the fraction of glutathione disulfide; and caused cell killing by a thiol-dependent process that could be rescued by N-acetylcysteine. Furthermore, TPP-derivative-induced melanoma toxicity was enhanced by glutathione depletion (using buthionine sulfoximine) as well as inhibition of thioredoxin reductase (using auranofin). In addition, there was a structure-activity relationship between the aliphatic side-chain length of TPP-derivatives (5-16 carbons), where longer carbon chains increased melanoma cell metabolic disruption and cell killing. In vivo bio-distribution experiments showed that intratumoral administration of a C14-TPP-derivative (12-carbon aliphatic chain), using a slow-release thermosensitive hydrogel as a delivery vehicle, localized the drug at the melanoma tumor site. There, it was observed to persist and decrease the growth rate of melanoma tumors. These results demonstrate that TPP-derivatives selectively induce thiol-dependent metabolic oxidative stress and cell killing in malignant melanoma and support the hypothesis that a hydrogel-based TPP-derivative delivery system could represent a therapeutic drug-delivery strategy for melanoma.


Assuntos
Auranofina/administração & dosagem , Butionina Sulfoximina/administração & dosagem , Melanoma/tratamento farmacológico , Mitocôndrias/metabolismo , Compostos Organofosforados/administração & dosagem , Animais , Auranofina/farmacologia , Butionina Sulfoximina/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Preparações de Ação Retardada , Sinergismo Farmacológico , Feminino , Humanos , Hidrogéis/química , Melanoma/metabolismo , Camundongos , Mitocôndrias/efeitos dos fármacos , Compostos Organofosforados/química , Compostos Organofosforados/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Relação Estrutura-Atividade , Temperatura , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Cancers (Basel) ; 12(9)2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-32899427

RESUMO

Ionizing radiation is a common and effective therapeutic option for the treatment of glioblastoma (GBM). Unfortunately, some GBMs are relatively radioresistant and patients have worse outcomes after radiation treatment. The mechanisms underlying intrinsic radioresistance in GBM has been rigorously investigated over the past several years, but the complex interaction of the cellular molecules and signaling pathways involved in radioresistance remains incompletely defined. A clinically effective radiosensitizer that overcomes radioresistance has yet to be identified. In this review, we discuss the current status of radiation treatment in GBM, including advances in imaging techniques that have facilitated more accurate diagnosis, and the identified mechanisms of GBM radioresistance. In addition, we provide a summary of the candidate GBM radiosensitizers being investigated, including an update of subjects enrolled in clinical trials. Overall, this review highlights the importance of understanding the mechanisms of GBM radioresistance to facilitate the development of effective radiosensitizers.

11.
J Biol Chem ; 295(20): 6946-6957, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32265301

RESUMO

The incidence of pancreatic cancer increases with age, suggesting that chronological aging is a significant risk factor for this disease. Fibroblasts are the major nonmalignant cell type in the stroma of human pancreatic ductal adenocarcinoma (PDAC). In this study, we investigated whether the chronological aging of normal human fibroblasts (NHFs), a previously underappreciated area in pancreatic cancer research, influences the progression and therapeutic outcomes of PDAC. Results from experiments with murine xenografts and 2D and 3D co-cultures of NHFs and PDAC cells revealed that older NHFs stimulate proliferation of and confer resistance to radiation therapy of PDAC. MS-based metabolite analysis indicated that older NHFs have significantly increased arachidonic acid 12-lipoxygenase (ALOX12) expression and elevated levels of its mitogenic metabolite, 12-(S)-hydroxy-5,8,10,14-eicosatetraenoic acid (12-(S)-HETE) compared with their younger counterparts. In co-cultures with older rather than with younger NHFs, PDAC cells exhibited increases in mitogen-activated protein kinase signaling and cellular metabolism, as well as a lower oxidation state that correlated with their enhanced proliferation and resistance to radiation therapy. Expression of ALOX12 was found to be significantly lower in PDAC cell lines and tumor biopsies, suggesting that PDAC cells rely on a stromal supply of mitogens for their proliferative needs. Pharmacological (hydroxytyrosol) and molecular (siRNA) interventions of ALOX12 in older NHFs suppressed their ability to stimulate proliferation of PDAC cells. We conclude that chronological aging of NHFs contributes to PDAC progression and that ALOX12 and 12-(S)-HETE may be potential stromal targets for interventions that seek to halt progression and improve therapy outcomes.


Assuntos
Araquidonato 12-Lipoxigenase/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Senescência Celular , Ácidos Hidroxieicosatetraenoicos/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias Pancreáticas/metabolismo , Animais , Araquidonato 12-Lipoxigenase/genética , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Camundongos , Proteínas de Neoplasias/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Células Estromais/metabolismo , Células Estromais/patologia
12.
Cancer Res ; 80(7): 1401-1413, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32041838

RESUMO

Pharmacologic ascorbate treatment (P-AscH-, high-dose, intravenous vitamin C) results in a transient short-term increase in the flux of hydrogen peroxide that is preferentially cytotoxic to cancer cells versus normal cells. This study examines whether an increase in hydrogen peroxide is sustained posttreatment and potential mechanisms involved in this process. Cellular bioenergetic profiling following treatment with P-AscH- was examined in tumorigenic and nontumorigenic cells. P-AscH- resulted in sustained increases in the rate of cellular oxygen consumption (OCR) and reactive oxygen species (ROS) in tumor cells, with no changes in nontumorigenic cells. Sources for this increase in ROS and OCR were DUOX 1 and 2, which are silenced in pancreatic ductal adenocarcinoma, but upregulated with P-AscH- treatment. An inducible catalase system, to test causality for the role of hydrogen peroxide, reversed the P-AscH--induced increases in DUOX, whereas DUOX inhibition partially rescued P-AscH--induced toxicity. In addition, DUOX was significantly downregulated in pancreatic cancer specimens compared with normal pancreas tissues. Together, these results suggest that P-AscH--induced toxicity may be enhanced by late metabolic shifts in tumor cells, resulting in a feed-forward mechanism for generation of hydrogen peroxide and induction of metabolic stress through enhanced DUOX expression and rate of oxygen consumption. SIGNIFICANCE: A high dose of vitamin C, in addition to delivering an acute exposure of H2O2 to tumor cells, activates DUOX in pancreatic cancer cells, which provide sustained production of H2O2.


Assuntos
Ácido Ascórbico/farmacologia , Carcinoma Ductal Pancreático/terapia , Oxidases Duais/metabolismo , Peróxido de Hidrogênio/metabolismo , Neoplasias Pancreáticas/terapia , Administração Intravenosa , Animais , Ácido Ascórbico/uso terapêutico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Quimioterapia Adjuvante/métodos , Relação Dose-Resposta a Droga , Regulação para Baixo/genética , Oxidases Duais/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Oxigênio/metabolismo , Consumo de Oxigênio/efeitos dos fármacos , Pâncreas/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Pancreaticoduodenectomia , Espécies Reativas de Oxigênio/metabolismo , Regulação para Cima/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Antioxidants (Basel) ; 9(2)2020 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-31991904

RESUMO

This study used a nitroaliphatic chemistry approach to synthesize a novel artemisinin-derived carba-dimer (AG-1) and determined its anti-proliferative effects in human normal and cancer cells. AG-1 treatments selectively inhibit proliferation of cancer cells compared to normal human fibroblasts. Compared to artemisinin, AG-1 is more toxic to human breast, prostate, head-neck, pancreas and skin cancer cells; 50% inhibition (IC50) 123 µM in AG-1 vs. 290 µM in artemisinin-treated breast cancer cells. AG-1 treatment decreased (~ 5 folds) cyclin D1 protein expression that correlated with an increase in the percentage of cells in the G1-phase, suggesting a G1 delay. AG-1-induced toxicity was independent of the DNA damage at 72 h post-treatment, as measured by micronuclei frequency and H2AX protein levels. Results from electron paramagnetic resonance spectroscopy showed Fe-catalyzed formation of AG-1 carbon-centered radicals in a cell-free system. Flow cytometry analysis of H2DCF-DA oxidation showed a significant increase in the steady-state levels of reactive oxygen species (ROS) in AG-1-treated cells. Pre-treatment with N-acetyl-l-cysteine and antioxidant enzymes (superoxide dismutase and catalase) significantly suppressed AG-1-induced toxicity, suggesting that superoxide and hydrogen peroxide contribute to AG-1-induced toxicity in human cancer cells. AG-1 represents a novel class of anti-cancer drug that is more potent than its parent compound, artemisinin.

14.
Int J Mol Sci ; 20(1)2019 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-30626124

RESUMO

Combination radiation and chemotherapy are commonly used to treat locoregionally advanced head and neck squamous cell carcinoma (HNSCC). Aggressive dosing of these therapies is significantly hampered by side effects due to normal tissue toxicity. Selenium represents an adjuvant that selectively sensitizes cancer cells to these treatments modalities, potentially by inducing lipid peroxidation (LPO). This study investigated whether one such selenium compound, methylseleninic acid (MSA), induces LPO and radiation sensitivity in HNSCC cells. Results from 4,4-difluoro-4-bora-3a,4a-diaza-S-indacene (BODIPY) C11 oxidation and ferric thiocyanate assays revealed that MSA induced LPO in cells rapidly and persistently. Propidium iodide (PI) exclusion assay found that MSA was more toxic to cancer cells than other related selenium compounds; this toxicity was abrogated by treatment with α-tocopherol, an LPO inhibitor. MSA exhibited no toxicity to normal fibroblasts at similar doses. MSA also sensitized HNSCC cells to radiation as determined by clonogenic assay. Intracellular glutathione in cancer cells was depleted following MSA treatment, and supplementation of the intracellular glutathione pool with N-acetylcysteine sensitized cells to MSA. The addition of MSA to a cell-free solution of glutathione resulted in an increase in oxygen consumption, which was abrogated by catalase, suggesting the formation of H2O2. Results from this study identify MSA as an inducer of LPO, and reveal its capability to sensitize HNSCC to radiation. MSA may represent a potent adjuvant to radiation therapy in HNSCC.


Assuntos
Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Peroxidação de Lipídeos/efeitos dos fármacos , Compostos Organosselênicos/farmacologia , Tolerância a Radiação/efeitos dos fármacos , Acetilcisteína/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Linhagem Celular Tumoral , Raios gama , Glutationa/metabolismo , Humanos , Peroxidação de Lipídeos/efeitos da radiação , Consumo de Oxigênio/efeitos dos fármacos , Tolerância a Radiação/efeitos da radiação , Fatores de Tempo
15.
Cancer Res ; 77(18): 5054-5067, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28765155

RESUMO

Elderly cancer patients treated with ionizing radiation (IR) or chemotherapy experience more frequent and greater normal tissue toxicity relative to younger patients. The current study demonstrates that exponentially growing fibroblasts from elderly (old) male donor subjects (70, 72, and 78 years) are significantly more sensitive to clonogenic killing mediated by platinum-based chemotherapy and IR (∼70%-80% killing) relative to young fibroblasts (5 months and 1 year; ∼10%-20% killing) and adult fibroblasts (20 years old; ∼10%-30% killing). Old fibroblasts also displayed significantly increased (2-4-fold) steady-state levels of O2•-, O2 consumption, and mitochondrial membrane potential as well as significantly decreased (40%-50%) electron transport chain (ETC) complex I, II, IV, V, and aconitase (70%) activities, decreased ATP levels, and significantly altered mitochondrial structure. Following adenoviral-mediated overexpression of SOD2 activity (5-7-fold), mitochondrial ETC activity and aconitase activity were restored, demonstrating a role for mitochondrial O2•- in these effects. Old fibroblasts also demonstrated elevated levels of endogenous DNA damage that were increased following treatment with IR and chemotherapy. Most importantly, treatment with the small-molecule, superoxide dismutase mimetic (GC4419; 0.25 µmol/L) significantly mitigated the increased sensitivity of old fibroblasts to IR and chemotherapy and partially restored mitochondrial function without affecting IR or chemotherapy-induced cancer cell killing. These results support the hypothesis that age-associated increased O2•- and resulting DNA damage mediate the increased susceptibility of old fibroblasts to IR and chemotherapy that can be mitigated by GC4419. Cancer Res; 77(18); 5054-67. ©2017 AACR.


Assuntos
Cisplatino/efeitos adversos , Fibroblastos/patologia , Mitocôndrias/patologia , Radiação Ionizante , Pele/patologia , Superóxidos/metabolismo , Adulto , Fatores Etários , Idoso , Animais , Antineoplásicos/efeitos adversos , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Células Cultivadas , Fibroblastos/efeitos dos fármacos , Fibroblastos/efeitos da radiação , Humanos , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos da radiação , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/efeitos da radiação , Estresse Oxidativo , Pele/efeitos dos fármacos , Pele/efeitos da radiação , Superóxido Dismutase/metabolismo , Adulto Jovem
16.
Mol Biol Rep ; 43(1): 31-9, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26671656

RESUMO

The rebuilding of the connective tissue during wound healing requires the recruitment of fibroblasts to the wound area as well as reentry of quiescent fibroblasts to the proliferative cycle. Whether this process can be modulated by a small molecular weight thiol antioxidant N-acetyl-L-cysteine (NAC) was tested in normal human skin fibroblasts (NHFs) using a uni-directional wound healing assay. NAC treated cells demonstrated a decreased migration rate but increased number of proliferating cells recruited into the wound area post wounding. Fifteen day quiescent control and NAC treated NHFs were re-plated at a lower density and cell numbers counted at different days post-plating. Interestingly, NAC treated cells exhibited increased cellular proliferation indicated by both decreased cell population doubling time and increased S phase cells. NAC treated cells demonstrated decreased steady state levels of reactive oxygen species as well as increased protein and activity levels of manganese superoxide dismutase (MnSOD). NAC treatment failed to induce proliferation in quiescent cells lacking MnSOD expression. These results demonstrate that NAC enhanced the recruitment of quiescent NHFs into proliferation cycle during wound healing. Our results also suggest that the wound healing properties of NAC might be due to its ability to induce and enhance MnSOD expression and activity. Altogether, these findings suggest NAC might be potentially developed as a dietary intervention to improve tissue injury in animals and humans.


Assuntos
Acetilcisteína/farmacologia , Fibroblastos/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Cicatrização/efeitos dos fármacos , Animais , Antioxidantes/farmacologia , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Camundongos , Camundongos Knockout , Oxirredução , Espécies Reativas de Oxigênio/metabolismo
17.
Arch Toxicol ; 90(2): 319-32, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25417049

RESUMO

Polychlorinated biphenyls (PCBs) and their metabolites are environmental pollutants that are known to have adverse health effects. 1-(4-Chlorophenyl)-benzo-2,5-quinone (4-ClBQ), a quinone metabolite of 4-monochlorobiphenyl (PCB3, present in the environment and human blood) is toxic to human skin keratinocytes, and breast and prostate epithelial cells. This study investigates the hypothesis that 4-ClBQ-induced metabolic oxidative stress regulates toxicity in human keratinocytes. Results from Seahorse XF96 Analyzer showed that the 4-ClBQ treatment increased extracellular acidification rate, proton production rate, oxygen consumption rate and ATP content, indicative of metabolic oxidative stress. Results from a q-RT-PCR assay showed significant increases in the mRNA levels of hexokinase 2 (hk2), pyruvate kinase M2 (pkm2) and glucose-6-phosphate dehydrogenase (g6pd), and decreases in the mRNA levels of succinate dehydrogenase (complex II) subunit C and D (sdhc and sdhd). Pharmacological inhibition of G6PD-activity enhanced the toxicity of 4-ClBQ, suggesting that the protective function of the pentose phosphate pathway is functional in 4-ClBQ-treated cells. The decrease in sdhc and sdhd expression was associated with a significant decrease in complex II activity and increase in mitochondrial levels of ROS. Overexpression of sdhc and sdhd suppressed 4-ClBQ-induced inhibition of complex II activity, increase in mitochondrial levels of ROS, and toxicity. These results suggest that the 4-ClBQ treatment induces metabolic oxidative stress in HaCaT cells, and while the protective function of the pentose phosphate pathway is active, inhibition of complex II activity sensitizes HaCaT cells to 4-ClBQ-induced toxicity.


Assuntos
Benzoquinonas/toxicidade , Queratinócitos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Succinato Desidrogenase/metabolismo , Trifosfato de Adenosina/metabolismo , Compostos de Bifenilo/toxicidade , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Linhagem Celular , Hexoquinase/metabolismo , Humanos , Queratinócitos/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Via de Pentose Fosfato/efeitos dos fármacos , Succinato Desidrogenase/genética , Hormônios Tireóideos/genética , Hormônios Tireóideos/metabolismo , Proteínas de Ligação a Hormônio da Tireoide
18.
Cancer Res ; 75(16): 3314-26, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26081808

RESUMO

The toxicity of pharmacologic ascorbate is mediated by the generation of H2O2 via the oxidation of ascorbate. Because pancreatic cancer cells are sensitive to H2O2 generated by ascorbate, they would also be expected to become sensitized to agents that increase oxidative damage such as ionizing radiation. The current study demonstrates that pharmacologic ascorbate enhances the cytotoxic effects of ionizing radiation as seen by decreased cell viability and clonogenic survival in all pancreatic cancer cell lines examined, but not in nontumorigenic pancreatic ductal epithelial cells. Ascorbate radiosensitization was associated with an increase in oxidative stress-induced DNA damage, which was reversed by catalase. In mice with established heterotopic and orthotopic pancreatic tumor xenografts, pharmacologic ascorbate combined with ionizing radiation decreased tumor growth and increased survival, without damaging the gastrointestinal tract or increasing systemic changes in parameters indicative of oxidative stress. Our results demonstrate the potential clinical utility of pharmacologic ascorbate as a radiosensitizer in the treatment of pancreatic cancer.


Assuntos
Ácido Ascórbico/farmacologia , Neoplasias Pancreáticas/terapia , Radiossensibilizantes/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Antioxidantes/farmacologia , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Sobrevivência Celular/efeitos da radiação , Quimiorradioterapia , Dano ao DNA , Relação Dose-Resposta à Radiação , Glutationa/metabolismo , Dissulfeto de Glutationa/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Estimativa de Kaplan-Meier , Modelos Lineares , Camundongos Nus , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/efeitos da radiação , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Radiação Ionizante , Carga Tumoral/efeitos dos fármacos , Carga Tumoral/genética , Carga Tumoral/efeitos da radiação
19.
Toxicol Lett ; 233(3): 258-66, 2015 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-25668756

RESUMO

Aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor that plays a critical role in metabolism, cell proliferation, development, carcinogenesis, and xenobiotic response. In general, dioxin-like polychlorinated biphenyls (PCBs) exhibit a ligand-dependent activation of AhR-signaling. Results from this study show that a quinone-derivative (1-(4-Chlorophenyl)-benzo-2,5-quinone; 4-ClBQ) of a non-dioxin like PCB (PCB3) also activates AhR-signaling. Treatments of HaCaT human keratinocytes with 4-ClBQ and dioxin-like PCB126 significantly increased AhR-target gene expression, CYP1A1 mRNA and protein levels. 4-ClBQ-induced increase CYP1A1 expression was associated with an increase in the nuclear translocation of AhR protein as well as an increase in the luciferase-reporter activity of a human CYP1A1 xenobiotic response element (XRE). 6,2',4'-Trimethoxyflavone (TMF), a well-characterized AhR-ligand antagonist significantly suppressed PCB126-induced increase in CYP1A1 expression, while the same treatment did not suppress 4-ClBQ-induced increase in CYP1A1 expression. However, siRNA-mediated down-regulation of AhR significantly inhibited 4-ClBQ-induced increase in CYP1A1 expression, suggesting that AhR mediates 4-ClBQ-induced increase in CYP1A1 expression. Interestingly, treatment with the antioxidant N-acetyl-l-cysteine significantly suppressed 4-ClBQ-induced increase in CYP1A1 expression. Furthermore, CYP1A1 expression also increased in cells treated with hydrogen peroxide. These results demonstrate that a ligand-independent and oxidative stress dependent pathway activates AhR-signaling in 4-ClBQ treated HaCaT cells. Because AhR signaling is believed to mediate xenobiotics response, our results may provide a mechanistic rationale for the use of antioxidants as effective countermeasure to environmental pollutant-induced adverse health effects.


Assuntos
Benzoquinonas/toxicidade , Queratinócitos/efeitos dos fármacos , Receptores de Hidrocarboneto Arílico/fisiologia , Transdução de Sinais/fisiologia , Transporte Ativo do Núcleo Celular , Compostos de Bifenilo/toxicidade , Células Cultivadas , Citocromo P-450 CYP1A1/genética , Flavonas/farmacologia , Humanos , Queratinócitos/metabolismo , Ligantes , Estresse Oxidativo , Bifenilos Policlorados/toxicidade
20.
Radiat Res ; 182(4): 420-9, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25229973

RESUMO

Cellular quiescence is a reversible growth arrest in which cells retain their ability to enter into and exit from the proliferative cycle. This study investigates the hypothesis that cell growth-state specific oxidative stress response regulates radiosensitivity of cancer cells. Results showed that quiescent (low proliferative index; >75% G1 phase and lower RNA content) Cal27 and FaDu human head and neck squamous cell carcinoma (HNSCC) are radioresistant compared to proliferating cells. Quiescent cells exhibited a three to tenfold increase in mRNA levels of Mn-superoxide dismutase (MnSOD), dual oxidase 2 (DUOX2) and dual-specificity phosphatase 1 (DUSP1), while mRNA levels of catalase (CAT), peroxiredoxin 3 (PRDX3) and C-C motif ligand 5 (CCL5) were approximately two to threefold lower compared to proliferating cells. mRNA levels of forkhead box M1 (FOXM1) showed the largest decrease in quiescent cells at approximately 18-fold. Surprisingly, radiation treatment resulted in a distinct gene expression pattern that is specific to proliferating and quiescent cells. Specifically, FOXM1 expression increased two to threefold in irradiated quiescent cells, while the same treatment had no net effect on FOXM1 mRNA expression in proliferating cells. RNA interference and pharmacological-based downregulation of FOXM1 abrogated radioresistance of quiescent cells. Furthermore, radioresistance of quiescent cells was associated with an increase in glucose consumption and expression of glucose-6-phosphate dehydrogenase (G6PD). Knockdown of FOXM1 resulted in a significant decrease in G6PD expression, and pharmacological-inhibition of G6PD sensitized quiescent cells to radiation. Taken together, these results suggest that targeting FOXM1 may overcome radioresistance of quiescent HNSCC.


Assuntos
Carcinoma de Células Escamosas/patologia , Ciclo Celular/efeitos da radiação , Fatores de Transcrição Forkhead/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Tolerância a Radiação/efeitos da radiação , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Proteína Forkhead Box M1 , Fatores de Transcrição Forkhead/antagonistas & inibidores , Fatores de Transcrição Forkhead/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Humanos , Via de Pentose Fosfato/efeitos dos fármacos , Via de Pentose Fosfato/efeitos da radiação , Tolerância a Radiação/efeitos dos fármacos , Carcinoma de Células Escamosas de Cabeça e Pescoço , Tioestreptona/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA