Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 15(13): 3627-3638, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38530393

RESUMO

Metalloporphyrins with open d-shell ions can drive biochemical energy cycles. However, their utilization in photoconversion is hampered by rapid deactivation. Mapping the relaxation pathways is essential for elaborating strategies that can favorably alter the charge dynamics through chemical design and photoexcitation conditions. Here, we combine transient optical absorption spectroscopy and transient X-ray emission spectroscopy with femtosecond resolution to probe directly the coupled electronic and spin dynamics within a photoexcited nickel porphyrin in solution. Measurements and calculations reveal that a state with charge-transfer character mediates the formation of the thermalized excited state, thereby advancing the description of the photocycle for this important representative molecule. More generally, establishing that intramolecular charge-transfer steps play a role in the photoinduced dynamics of metalloporphyrins with open d-shell sets a conceptual ground for their development as building blocks capable of boosting nonadiabatic photoconversion in functional architectures through "hot" charge transfer down to the attosecond time scale.

2.
J Am Chem Soc ; 142(1): 233-241, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31815456

RESUMO

Self-assembled peptide micelles and fibers demonstrate unique control over the photophysical properties of the bound, light-activated chromophore, zinc protoporphyrin IX, (PPIX)Zn. Micelles encapsulate either a mixture of uncoordinated and coordinated (PPIX)Zn or all coordinated depending on the ratio of peptide/porphyrin. As the ratio increases toward a 1:1 micelle/porphyrin ratio, providing the chromophore with a discrete coordination environment reminiscent of unstructured proteins, the micelles favor triplet formation. Fibers, however, promote a linear array of porphyrin molecules that dictates exciton hopping and excimer formation at ratios as high as 60:1, peptide/porphyrin. However, even in fibers, the formation of the triplet species increases with increasing peptide/porphyrin ratio due to increased spatial separation between neighboring chromophores facilitating intersystem crossing. Full characterization of the micelles structures and comparison to the fibers lead to the comparison with natural systems and the ability to control the excited populations that have utility in photocatalytic processes. In addition, the incorporation of a second chromophore, heme, yields an electron transfer pathway in both micelles and fibers that highlights the utility of the peptide assemblies when engineering multichromophore arrays as inspired by natural, photosynthetic proteins.


Assuntos
Peptídeos/química , Porfirinas/química , Zinco/química
3.
Langmuir ; 29(24): 7425-32, 2013 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-23351096

RESUMO

Hybrid nanoarchitectures are among the most promising nanotechnology-enabled materials for biomedical applications. Interfacing of nanoparticles with active materials gives rise to the structures with unique multiple functionality. Superparamagnetic iron oxide nanoparticles particles SPION are widely employed in the biology and in developing of advanced medical technologies. Polymeric micelles offer the advantage of multifunctional carriers which can serve as delivery vehicles carrying nanoparticles, hydrophobic chemotherapeutics and other functional materials and molecules. Stimuli-responsive polymers are especially attractive since their properties can be modulated in a controlled manner. Here we report on multifunctional thermo-responsive poly(N-isopropylacrylamide-co-acrylamide)-block-poly(ε-caprolactone) random block copolymer micelles as magnetic hyperthermia-mediated payload release and imaging agents. The combination of copolymers, nanoparticles and doxorubicin drug was tailored the way that the loaded micelles were cable to respond to magnetic heating at physiologically-relevant temperatures. A surface functionalization of the micelles with the integrin ß4 antibody and consequent interfacing of the resulting nanobio hybrid with squamous head and neck carcinoma cells which is known to specifically over-express the A9 antigen resulted in concentration of the micelles on the surface of cells. No inherent cytotoxicity was detected for the magnetic micelles without external stimuli application. Furthermore, SPION-loaded micelles demonstrate significant MRI contrast enhancement abilities.


Assuntos
Magnetismo , Micelas , Nanopartículas , Imageamento por Ressonância Magnética , Microscopia de Força Atômica , Microscopia Confocal , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
4.
J Am Chem Soc ; 134(36): 14646-9, 2012 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-22916716

RESUMO

Long fibers assembled from peptide amphiphiles capable of binding the metalloporphyrin zinc protoporphyrin IX ((PPIX)Zn) have been synthesized. Rational peptide design was employed to generate a peptide, c16-AHL(3)K(3)-CO(2)H, capable of forming a ß-sheet structure that propagates into larger fibrous structures. A porphyrin-binding site, a single histidine, was engineered into the peptide sequence in order to bind (PPIX)Zn to provide photophysical functionality. The resulting system indicates control from the molecular level to the macromolecular level with a high order of porphyrin organization. UV/visible and circular dichroism spectroscopies were employed to detail molecular organization, whereas electron microscopy and atomic force microscopy aided in macromolecular characterization. Preliminary picosecond transient absorption data are also reported. Reduced hemin, (PPIX)Fe(II), was also employed to highlight the material's versatility and tunability.


Assuntos
Compostos Organometálicos/síntese química , Peptídeos/química , Protoporfirinas/química , Modelos Moleculares , Compostos Organometálicos/química , Estrutura Secundária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA